|
Home
Syllabus
Lecture Topics
Homework
Policies
|
|
Math 3140: Abstract Algebra 1,
Spring 2026
|
|
Homework
|
|
Homework text should be typed and submitted to Canvas in pdf form.
Latex HW template.
HWtemplate.tex,
HWtemplate.zip,
HWtemplate.pdf.
Latex guide
You do not have to use Latex. Also, you do not have to create digital images.
Rather, you may submit hand-drawn images
to accompany your solutions when convenient and desirable.
|
|
|
Assignment
|
Assigned
|
Due
|
Problems
|
| HW1 |
1/15/26
|
|
Read
pages 25-31, 37-41. (You probably already know a lot of this, so I hope
this reading goes by quickly.)
1.
(a) How many algebras are there of the form
$\langle \{0,1\}; \star\rangle$ if
$\mathbf{arity}(\star)=2$? (You need to count how many different
tables for $\star$ are possible.)
(b) How many isomorphism types of algebras are there of the form
$\langle \{0,1\}; \star\rangle$? (Count algebras as in part (a), but
discard isomorphic copies.)
2. Suppose that $a$ is an identity element for $+$ in
$\langle \{a,b,c\}; +\rangle$, where
$\mathbf{arity}(+)=2$. (This means that $a+x=x = x+a$ for every $x$.)
How many possibilities are there
for such an algebra? How many possibilities if $+$ is
a commutative operation with identity element $a$?
(``Commutative'' means that $x+y=y+x$ for every $x$ and $y$.)
3. Let $\mathbb Z = \langle Z; +, -, 0\rangle$.
Show that if $h\colon \mathbb Z\to \mathbb Z$ is a homomorphism,
and $h(1) = a$, then $h(n) = an$ for every $n\in Z$.
(Hint: First, use induction to prove it for positive $n$.)
Solution.tex.
Solution.pdf.
|
| HW2 |
1/22/26
|
1/28/26
|
Read
pages 69-72.
1. In an earlier HW assignment, you determined the
number of 2-element algebras of the form
$\langle \{0,1\}; \star\rangle$ where
$\mathbf{arity}(\star)=2$. You also determined the number
of isomorphism types of such algebras. Let's continue that
investigation by answering the following additional question:
How many $2$-element algebras of the form
$\langle \{0,1\}; \star\rangle$ have an identity element?
First give the number of such algebras
up to equality, then state
the number of such algebras up to isomorphism.
2. Show that if some algebra
$\mathbb{A}=\langle A; \star\rangle$
has an identity element for $\star$, then the identity
element for $\star$ is unique.
3. Suppose that
$\mathbb{A}=\langle A; \star, 1\rangle$ is an algebra
with one binary operation $\star$
and one zeroary operation $1$.
Assume that $1$ is an identity element of
$\mathbb{A}$ with respect to $\star$. If $a\in A$, then
an inverse to $a$ with respect to $\star$
is an element $b\in A$
such that $a\star b = 1$ and $b\star a = 1$.
(a) Show that if $\star$ is an associative operation,
then any $a\in A$ can have at most one inverse.
(b) The purpose of this example is to show
that $a\in A$ may have more than one inverse
if the multiplication $\star$ is not associative.
Give an example of a $3$-element algebra
$\mathbb{A}=\langle \{1,a,b\}; \star, 1\rangle$
where (i) $1$ is an identity element for $\mathbb{A}$,
(ii) every element of
$\mathbb{A}$ has an inverse with respect to $\star$,
but (iii) inverses are
not unique in $\mathbb{A}$. (To “ Give an example ”
it suffices to write down a table for $\star$.)
|
| HW3 |
1/29/26
|
2/4/26
|
Read
Section 2.1. Read Exercises 2.1.3 and 2.1.8-2.1.11.
1. Exercise 2.1.7.
2. Exercise 2.1.13.
3. Exercise 2.15.
(Show only the
equivalence of (a), (d), (e).)
(Remember that a group is
called abelian if it satifies the
Commutative Law for multiplication: $(\forall x)(\forall y)(xy=yx)$.)
To solve these problems, you may cite and use anything stated
in the book, provided the cited item occurs earlier in the book
than the assigned problem.
|
|
|