Home

Syllabus

Lecture Topics

Homework

Policies


Math 3140: Abstract Algebra 1, Spring 2026


Homework

Homework text should be typed and submitted to Canvas in pdf form.

Latex HW template. HWtemplate.tex, HWtemplate.zip, HWtemplate.pdf.

Latex guide

You do not have to use Latex.
Also, you do not have to create digital images.
Rather, you may submit hand-drawn images to accompany your solutions when convenient and desirable.



Assignment
Assigned
Due
Problems
HW1 1/15/26
1/23/26
Unusual date!


Read pages 25-31, 37-41. (You probably already know a lot of this, so I hope this reading goes by quickly.)

1. 
(a) How many algebras are there of the form $\langle \{0,1\}; \star\rangle$ if $\mathbf{arity}(\star)=2$? (You need to count how many different tables for $\star$ are possible.)
(b) How many isomorphism types of algebras are there of the form $\langle \{0,1\}; \star\rangle$? (Count algebras as in part (a), but discard isomorphic copies.)

2.  Suppose that $a$ is an identity element for $+$ in $\langle \{a,b,c\}; +\rangle$, where $\mathbf{arity}(+)=2$. (This means that $a+x=x = x+a$ for every $x$.) How many possibilities are there for such an algebra? How many possibilities if $+$ is a commutative operation with identity element $a$? (``Commutative'' means that $x+y=y+x$ for every $x$ and $y$.)

3.  Let $\mathbb Z = \langle Z; +, -, 0\rangle$. Show that if $h\colon \mathbb Z\to \mathbb Z$ is a homomorphism, and $h(1) = a$, then $h(n) = an$ for every $n\in Z$. (Hint: First, use induction to prove it for positive $n$.)

Solution.tex.
Solution.pdf.

HW2 1/22/26
1/28/26
Read pages 69-72.

1.  In an earlier HW assignment, you determined the number of 2-element algebras of the form $\langle \{0,1\}; \star\rangle$ where $\mathbf{arity}(\star)=2$. You also determined the number of isomorphism types of such algebras. Let's continue that investigation by answering the following additional question:
How many $2$-element algebras of the form $\langle \{0,1\}; \star\rangle$ have an identity element? First give the number of such algebras up to equality, then state the number of such algebras up to isomorphism.

2.  Show that if some algebra $\mathbb{A}=\langle A; \star\rangle$ has an identity element for $\star$, then the identity element for $\star$ is unique.

3.  Suppose that $\mathbb{A}=\langle A; \star, 1\rangle$ is an algebra with one binary operation $\star$ and one zeroary operation $1$. Assume that $1$ is an identity element of $\mathbb{A}$ with respect to $\star$. If $a\in A$, then an inverse to $a$ with respect to $\star$ is an element $b\in A$ such that $a\star b = 1$ and $b\star a = 1$.
(a) Show that if $\star$ is an associative operation, then any $a\in A$ can have at most one inverse.
(b) The purpose of this example is to show that $a\in A$ may have more than one inverse if the multiplication $\star$ is not associative.
Give an example of a $3$-element algebra $\mathbb{A}=\langle \{1,a,b\}; \star, 1\rangle$ where (i) $1$ is an identity element for $\mathbb{A}$, (ii) every element of $\mathbb{A}$ has an inverse with respect to $\star$, but (iii) inverses are not unique in $\mathbb{A}$. (To “ Give an example ” it suffices to write down a table for $\star$.)
HW3 1/29/26
2/4/26
Read Section 2.1. Read Exercises 2.1.3 and 2.1.8-2.1.11.

1.  Exercise 2.1.7.

2.  Exercise 2.1.13.

3.  Exercise 2.15.
(Show only the equivalence of (a), (d), (e).)
(Remember that a group is called abelian if it satifies the Commutative Law for multiplication: $(\forall x)(\forall y)(xy=yx)$.)

To solve these problems, you may cite and use anything stated in the book, provided the cited item occurs earlier in the book than the assigned problem.