

HW 1: solution sketches

(1) (a) How many algebras are there of the form $\langle \{0, 1\}; \star \rangle$ if $\text{arity}(\star) = 2$? (You need to count how many different tables for \star are possible.)
 (b) How many *isomorphism types* of algebras are there of the form $\langle \{0, 1\}; \star \rangle$? (Count algebras as in part (a), but discard isomorphic copies.)

(a) The possible tables for \star all have the form

\star	0	1
0	a	b
1	c	d

where a, b, c and d may be chosen independently from the set $\{0, 1\}$. There are $2 \times 2 \times 2 \times 2 = 16$ choices for $(a, b, c, d) \in \{0, 1\}^4$, so there are 16 possible algebras.

(b) An isomorphism $h: \mathbb{A} \rightarrow \mathbb{B}$ between algebras with universes $\{0, 1\}$ is a bijection $h: \{0, 1\} \rightarrow \{0, 1\}$ which preserves the operations. There are two possible bijections $h: \{0, 1\} \rightarrow \{0, 1\}$: the identity function $h(x) = x$ on $\{0, 1\}$ and the “swap” $h(x) = \neg x$ (Boolean notation). For h to be an isomorphism between two **different** algebras with universe $\{0, 1\}$, it must be the swap. If h is the swap, $h: \mathbb{A} \rightarrow \mathbb{B}$ is an isomorphism, and the \star -table for \mathbb{A} is

\star	0	1
0	a	b
1	c	d

then the \star -table for \mathbb{B} must be

\star	0	1
0	$\neg d$	$\neg c$
1	$\neg b$	$\neg a$

(This table was computed by the condition that $x \star^{\mathbb{B}} y = \neg(\neg x \star^{\mathbb{A}} \neg y)$.) Call the unique \mathbb{B} that has its \star -table computed from the \star -table of \mathbb{A} in this way the “dual” of \mathbb{A} . Any algebra can be isomorphic only to itself (using $h(x) = x$) and to its dual (using $h(x) = \neg x$).

Usually, the dual of a 2-element algebra will be different from the original, but not always. Call \mathbb{A} “self-dual” if it is equal to its dual. \mathbb{A} is self-dual exactly when its table agrees with the table for its dual, which happens exactly when the \star -table for \mathbb{A} has the form:

\star	0	1
0	e	f
1	$\neg f$	$\neg e$

There are four tables like this (i.e., four choices for $(e, f) \in \{0, 1\}^2$.)

Altogether, this means that there are 4 self-dual algebras (each of which determines a single isomorphism type of 2-element algebra in this signature), while the remaining $16 - 4 = 12$ algebras are partitioned into dual pairs (which determine $12/2 = 6$ more isomorphism types). This yields $4 + 6 = 10$ isomorphism types of 2-element algebras in this signature.

(2) Suppose that a is an identity element for $+$ in $\langle \{a, b, c\}; + \rangle$, where $\text{arity}(+) = 2$. (This means that $a + x = x = x + a$ for every x .) How many possibilities are there for such an algebra? How many possibilities if $+$ is a commutative operation with identity element a ? (“Commutative” means that $x + y = y + x$ for every x and y .)

The answers to the two questions are $3^4 = 81$ and $3^3 = 27$, as we now explain.

The possible $+$ -tables for the first question have the form

+	a	b	c
a	a	b	c
b	b	w	x
c	c	y	z

where $(w, x, y, z) \in \{a, b, c\}^4$ may be chosen arbitrarily. There are $|\{a, b, c\}^4| = 3^4 = 81$ such choices.

For $+$ to be commutative, it is necessary and sufficient that $x = y$ in the above explanation. In this case, the $+$ -table has the form

+	a	b	c
a	a	b	c
b	b	w	x
c	c	x	z

The number of choices for $(w, x, z) \in \{a, b, c\}^3$ is $3^3 = 27$.

(3) Let $\mathbb{Z} = \langle \mathbb{Z}; +, -, 0 \rangle$. Show that if $h: \mathbb{Z} \rightarrow \mathbb{Z}$ is a homomorphism, and $h(1) = a$, then $h(n) = an$ for every $n \in \mathbb{Z}$. (Hint: First, use induction to prove it for positive n .)

We first prove that $h(n) = an$ for positive n by induction on n :

(Base Case: $n = 1$)

$$\begin{aligned} h(1) &= a && \text{(Definition of } h\text{)} \\ &= a \cdot 1 && \text{(1 is a multiplicative unit)} \end{aligned}$$

(Inductive Step: Assume true for $n = k$ when $k \geq 1$, prove true for $n = k + 1$)

$$\begin{aligned} h(k + 1) &= h(k) + h(1) && \text{(} h \text{ is a homomorphism)} \\ &= ka + a && \text{(Inductive Hypothesis+Assumption)} \\ &= (k + 1)a && \text{(Distributive Law)} \end{aligned}$$

Now, we prove it for $-n$ when $n > 0$. Since h is a homomorphism, $h(-n) = -h(n) = -(an) = a(-n)$.

Finally, we prove it for $n = 0$. Since 0 is a zeroary operation and h is a homomorphism, $h(0) = 0$. Hence $h(0) = 0 = a0$.

To summarize, we have shown that $h(n) = an$ for all values of n that are positive, negative, or zero, so the statement is true.