CARTAN ON CARTAN-KÄHLER LECTURE 16, MATH 8234

This note is based on sections **63-66** in É. Cartan's EDS book. **Cartan's Statement:** <u>Assumptions:</u> (M^n, \mathcal{I}) : real analytic EDS M: connected \mathcal{I} : containing no degree-0 part Suppose that $r(E_{p-1}) = 0$ for all regular E_{p-1} $(E_p)_O$: an ordinary integral element based at $O \in M$ $(E_{p-1})_O$ regular, contained in $(E_p)_O$ V_{p-1} real analytic (regular) integral manifold tangent to $(E_{p-1})_O$ <u>Conclusion</u>:

There exists a unique real analytic integral manifold $V_p \supset V_{p-1}$ tangent to $(E_p)_O$.

In his EDS book, Cartan proved the case when p = 3.

Setting:

Can choose local coordinates (x^i, z^{λ}) $(i = 1, 2, 3; \lambda = 1, 2, ..., n - 3)$ such that: $O: x^i = 0, z^{\lambda} = a^{\lambda}$ $(E_3)_O: dz^{\lambda} = a^{\lambda}_i dx^i$ $(E_2)_O: dz^{\lambda} = a^{\lambda}_i dx^i, dx^3 = 0$ $V_2: x^3 = 0, z^{\lambda} = \Phi^{\lambda}(x^1, x^2)$ subject to $\Phi^{\lambda}(0, 0) = a^{\lambda}, \quad \partial_1 \Phi^{\lambda}|_{(0,0)} = a^{\lambda}_1, \quad \partial_2 \Phi^{\lambda}|_{(0,0)} = a^{\lambda}_2$

Goal:

Look for a 3-dimensional integral manifold V_3 given by

$$z^{\lambda} = F^{\lambda}(x^1, x^2, x^3)$$

with

$$F^{\lambda}(x^1, x^2, 0) = \Phi^{\lambda}(x^1, x^2)$$
 (i.e., $V_2 \subset V_3$)

and

$$\partial_3 F^{\lambda}(0,0,0) = a_3^{\lambda}$$
 (i.e., V_3 is tangent to $(E_3)_O$)

Further Set-up:

In coordinates, suppose that ${\mathcal I}$ is algebraically generated by: <u>1-forms</u>:

$$\theta_{\alpha} = A_{\alpha i} \mathrm{d}x^{i} + A_{\alpha \lambda} \mathrm{d}z^{\lambda}$$

<u>2-forms</u>:

$$\phi_{\alpha} = \frac{1}{2} A_{\alpha i j} \mathrm{d}x^{i} \wedge \mathrm{d}x^{j} + A_{\alpha i \lambda} \mathrm{d}x^{i} \wedge \mathrm{d}z^{\lambda} + \frac{1}{2} A_{\alpha \lambda \mu} \mathrm{d}z^{\lambda} \wedge \mathrm{d}z^{\mu}$$
$$(A_{\alpha i j} = -A_{\alpha j i}, \quad A_{\alpha \lambda \mu} = -A_{\alpha \mu \lambda})$$

assuming that $d\theta_{\alpha}$ occur in ϕ_{α}

<u>3-forms</u>:

$$\psi_{\alpha} = \frac{1}{6} A_{\alpha i j k} \mathrm{d}x^{i j k} + \frac{1}{2} A_{\alpha i j \lambda} \mathrm{d}x^{i j} \wedge \mathrm{d}z^{\lambda} + \frac{1}{2} A_{\alpha i \lambda \mu} \mathrm{d}x^{i} \wedge \mathrm{d}z^{\lambda \mu} + \frac{1}{6} A_{\alpha \lambda \mu \nu} \mathrm{d}z^{\lambda \mu \nu} (A_{\alpha i j k} = -A_{\alpha j i k} = -A_{\alpha i k j}, \text{ etc.})$$

assuming that $d\phi_{\alpha}$ occur in ψ_{α}

Therefore, V_3 is an integral manifold if and only if the following expressions vanish:

$$H_{\alpha i} := A_{\alpha i} + A_{\alpha \lambda} \frac{\partial z^{\lambda}}{\partial x^{i}}$$

$$H_{\alpha i j} := A_{\alpha i j} + A_{\alpha i \lambda} \frac{\partial z^{\lambda}}{\partial x^{j}} - A_{\alpha j \lambda} \frac{\partial z^{\lambda}}{\partial x^{i}} + A_{\alpha \lambda \mu} \frac{\partial z^{\lambda}}{\partial x^{i}} \frac{\partial z^{\mu}}{\partial x^{j}}$$

$$H_{\alpha 123} := A_{\alpha 123} + \sum_{\substack{(ijk) \text{ even} \\ \text{perm. of (123)}}} A_{\alpha i j \lambda} \frac{\partial z^{\lambda}}{\partial x^{k}} + \sum_{\substack{(ijk) \text{ even} \\ \text{perm. of (123)}}} A_{\alpha i \lambda \mu} \frac{\partial z^{\lambda}}{\partial x^{j}} \frac{\partial z^{\mu}}{\partial x^{k}} + A_{\alpha \lambda \mu \nu} \frac{\partial z^{\lambda}}{\partial x^{1}} \frac{\partial z^{\mu}}{\partial x^{2}} \frac{\partial z^{\nu}}{\partial x^{3}}$$

Argument:

Group the H's into two classes:

$$(A) : H_{\alpha 1}, H_{\alpha 2}, H_{\alpha 12} (B) : H_{\alpha 3}, H_{\alpha 13}, H_{\alpha 23}, H_{\alpha 123}$$

Simple fact from linear algebra: If a matrix A (depending on parameters p^{α}) has rank r at (p_0^{α}) , then, in a neighborhood of (p_0^{α}) , rank $(A) \ge r$.

Simple fact from calculus: If, on \mathbb{R}^n , whenever $x^1 = x^2 = 0$, f is a linear function in x^3 without a constant term, then f is of the form

$$f = Ax^1 + Bx^2 + Cx^3$$

where C is a function of x^1, x^2 , and A, B are functions on \mathbb{R}^n .

When

(1)
$$x^{i} = 0, \quad z^{\lambda} = a^{\lambda}, \quad \frac{\partial z^{\lambda}}{\partial x^{1}} = a_{1}^{\lambda}, \quad \frac{\partial z^{\lambda}}{\partial x^{2}} = a_{2}^{\lambda},$$

the expressions in (A) are identically zero. (This is because $(E_2)_O$ is an integral element.) Thus the polar equations are given by substituting (1) in the expressions in (B), which become linear in $\partial_3 z^{\lambda}$. The rank of these expressions must be n-3 since we have assumed $r(E_2) = 0$. So we can pick a basis, the corresponding H's being denoted

$$H_{\rho3}, H_{\rho13}, H_{\rho23}, H_{\rho123}.$$

Cartan called these expressions the *principals*. The rest in (B) are called *non-principals*. He denoted the non-principals by

$$H_{\alpha'3}, H_{\alpha'13}, H_{\alpha'23}, H_{\alpha'123}$$

For values of $x^i, z^{\lambda}, \partial_1 z^{\lambda}, \partial_2 z^{\lambda}$ near (1), whenever they (together with the condition $dx^3 = 0$) determine a 2-dimensional integral element, the integral element will be regular, and the rank of the polar equations (i.e., equations obtained by substituting those values in (B)) would be n-3, by regularity; they are spanned by the 'principals' (substitution made), by the linear algebra fact mentioned above.

Since there are n-3 principals, it is not hard to see that the non-principals are linear combinations of

$$H_{\alpha 1}, H_{\alpha 2}, H_{\alpha 12}, H_{\rho 3}, H_{\rho 13}, H_{\rho 23}, H_{\rho 123}$$

with coefficients being functions of $x^i, z^\lambda, \partial_1 z^\lambda, \partial_2 z^\lambda$. (Exercise: Justify this.)

In particular, each $H_{\alpha'3}$ can only be a linear combination of $H_{\rho3}$, because it has degree-1 in $\partial_i z^{\lambda}$ and is independent of $\partial_1 z^{\lambda}$ and $\partial_2 z^{\lambda}$.

First use of Cauchy-Kowalewski:

The vanishing of the n-3 principals in the n-3 z^{λ} 's give rise to a determined system of Cauchy form:

PDE:
$$\frac{\partial z^{\lambda}}{\partial x^{3}} = (\text{analytic expression in } x^{i}, z^{\lambda}, \partial_{1} z^{\lambda}, \partial_{2} z^{\lambda}),$$

I.C. $z^{\lambda}(x^{1}, x^{2}, 0) = \Phi^{\lambda}(x^{1}, x^{2}).$

By Cauchy-Kowalewski, we obtain a unique solution $z^{\lambda}(x^1, x^2, x^3)$. Let's call the corresponding integral manifold V_3 .

Is V_3 an integral manifold of (M, \mathcal{I}) ?

It suffices to verify that all the H's vanish on V_3 . Because the principals vanish identically on V_3 , it suffices to verify that

$$H_{\alpha 1}, H_{\alpha 2}, H_{\alpha 12}$$

vanish on V_3 .

Using \mathcal{I} being differentially closed:

On V_3 , $H_{\alpha 3}$ are identically zero, since they are linear combinations of the principals $H_{\rho 3}$. Therefore, on V_3 ,

$$\theta_{\alpha} = H_{\alpha 1} \mathrm{d}x^1 + H_{\alpha 2} \mathrm{d}x^2.$$

Differentiating this, we obtain

$$\mathrm{d}\theta_{\alpha} = -\partial_3 H_{\alpha 1} \mathrm{d}x^1 \wedge \mathrm{d}x^3 - \partial_3 H_{\alpha 2} \mathrm{d}x^2 \wedge \mathrm{d}x^3 + (\partial_1 H_{\alpha 2} - \partial_2 H_{\alpha 1}) \mathrm{d}x^1 \wedge \mathrm{d}x^2.$$

Since $d\theta_{\alpha}$ occur in ϕ_{α} , $\partial_{3}H_{\alpha 1}$ occurs in $H_{\alpha 13}$ and is therefore a linear combination of $H_{\alpha 1}$, $H_{\alpha 2}$, $H_{\alpha 12}$. Similarly, $\partial_{3}H_{\alpha 2}$ occurs in $H_{\alpha 23}$ and is also a linear combination of $H_{\alpha 1}$, $H_{\alpha 2}$, $H_{\alpha 12}$. Now, on V_{3} ,

$$\phi_{\alpha} = H_{\alpha 12} \mathrm{d}x^{1} \wedge \mathrm{d}x^{2} + H_{\alpha 23} \mathrm{d}x^{2} \wedge \mathrm{d}x^{3} + H_{\alpha 13} \mathrm{d}x^{1} \wedge \mathrm{d}x^{3}.$$
$$\mathrm{d}\phi_{\alpha} = (\partial_{3}H_{\alpha 12} + \partial_{1}H_{\alpha 23} - \partial_{2}H_{\alpha 13})\mathrm{d}x^{123}.$$

Therefore, $\partial_3 H_{\alpha 12} + \partial_1 H_{\alpha 23} - \partial_2 H_{\alpha 13}$ occurs in $H_{\alpha 123}$ and is, therefore, a linear combination of $H_{\alpha 1}, H_{\alpha 2}, H_{\alpha 12}$.

Since, on V_3 , $H_{\alpha 23}$ and $H_{\alpha 13}$ are linear combinations of $H_{\alpha 1}$, $H_{\alpha 2}$, $H_{\alpha 12}$ with coefficients being analytic functions in x^i , $\partial_3 H_{\alpha 12}$ is a linear combination of

$$H_{\alpha 1}, H_{\alpha 2}, H_{\alpha 12}, \partial_1 H_{\alpha 1}, \partial_1 H_{\alpha 2}, \partial_1 H_{\alpha 12}, \partial_2 H_{\alpha 1}, \partial_2 H_{\alpha 2}, \partial_2 H_{\alpha 12}$$

Second use of Cauchy-Kowalewski:

In sum, on V_3 , $\partial_3 H_{\alpha 1}$, $\partial_3 H_{\alpha 2}$, $\partial_3 H_{\alpha 12}$ are all linear combinations of

 $H_{\alpha 1}, H_{\alpha 2}, H_{\alpha 12}, \partial_1 H_{\alpha 1}, \partial_1 H_{\alpha 2}, \partial_1 H_{\alpha 12}, \partial_2 H_{\alpha 1}, \partial_2 H_{\alpha 2}, \partial_2 H_{\alpha 12}$

with coefficients being analytic functions in x^1, x^2, x^3 , the initial conditions being

$$H_{\alpha 1}(x^1, x^2, 0) = H_{\alpha 2}(x^1, x^2, 0) = H_{\alpha 12}(x^1, x^2, 0) = 0.$$

Thus, $H_{\alpha 1}$, $H_{\alpha 2}$, $H_{\alpha 12}$ satisfy a determined Cauchy problem. By the uniqueness part of Cauchy-Kowalewski, $H_{\alpha 1}$, $H_{\alpha 2}$, $H_{\alpha 12}$ are identically zero on V_3 .

This completes the proof.