
LECTURE 8: SECOND ORDER LINEAR ODES

1. General Theory

It is clear that, generically, a second order linear ODE takes the form:

y′′ + p(x)y′ + q(x)y = g(x).

This equation is said to be homogeneous if g(x) ≡ 0.
Of course, the theoretical foundation of solving ODEs of this type is the Existence

and Uniqueness Theorem.

Theorem (Existence & Uniqueness) For the initial value problem

y′′ + p(x)y′ + q(x)y = g(x), y(t0) = y0, y
′(t0) = d0,

if p(x), q(x), g(x) are continuous within some interval I containing t0, then solution exists
and is unique on the interval I.

Linearity of the equation implies that one has the principle of superposition of solu-
tions. That is, if there are functions y1(x), y2(x) satisfying

y′′1 + p(x)y′1 + q(x)y1 = g1(x),

y′′2 + p(x)y′2 + q(x)y2 = g2(x),

then λy1(x) + µy2(x) is a solution to the equation

y′′ + p(x)y′ + q(x)y = g1(x) + g2(x).

For this very reason, all solutions of a homogeneous linear second order ODE form a
vector space, a basis of which is called fundamental solutions. Similarly, all the solutions
of a non-homogeneous equation is the superposition of a particular solution with the
solutions of the corresponding homogeneous equation (i.e., all the solutions of a non-
homogeneous equation form an affine space).

Given a homogeneous second order linear ODE which satisfies the hypotheses in the
above theorem, the conclusion of the theorem together with the principle of superposi-
tion implies that the vector space of solutions is exactly 2-dimensional. Thus, one only
needs to find two non-zero solutions which are linearly independent. As we learned be-
fore, a test for linear independence between solutions y1, y2 can be carried out by the
Wronskian:

W (x) = det

(
y1 y2
y′1 y′2

)
,

and the Wronskian is either never zero or constantly zero (review linear algebra).
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2. Recipes for Solutions

When it comes to practically solving a second order linear ODE, it turns out useful to
ask whether the equation is homogeneous/non-homogeneous, constant-coefficient/non-
constant-coefficient.

2.1. Constant-coefficient, Homogeneous.
We are familiar with solving homogeneous, constant-coefficient equations using char-

acteristic polynomials. For example, the equation

y′′ + 3y′ + 25
4
y = 0

has the characteristic polynomial

p(λ) = λ2 + 3λ+ 25
4
,

which has a pair of complex conjugate roots

λ1 =
−3 + 4i

2
, λ2 =

−3 − 4i

2
.

Hence a complex solution can be found:

z(x) = e(−3+4i)x/2.

Furthermore, one could verify that if z(x) is a complex solution, the its real and imaginary
parts are both solutions of the original equation. Thus the real fundamental solutions
are

y1(x) = e−3x/2 cos 2x, y2(x) = e−3x/2 sin 2x.

Generally, if the characteristic polynomial has repeated (real) roots λ, we have funda-
mental solutions

y1(x) = eλx, y2(x) = xeλx.

2.2. Constant-coefficient, Non-homogeneous.
To be precise, the non-homogeneity refers to the term g(x) being an exponential, a sine

or cosine, a polynomial or certain combination of such functions. To find a particular
solution, one need to make a guess of the form of solution, with coefficients undetermined;
then plug the guessed “solution” to the equation to establish relations for solving the
those coefficients. Indeed, we have the
Theorem. Consider the constant coefficient linear equation

ay′′ + by′ + cy = g(x),

with the characteristic polynomial p(λ) = aλ2 + bλ+ c.
(1) If g(x) = Pn(x) is a polynomial of degree n, then yp = xs(anx

n + ... + a1x + a0),
where s is the multiplicity of 0 as a root of p(λ).

(2) If g(x) = Pn(x)erx, then yp = xs(anx
n+ ...+a1x+a0)e

rt, where s is the multiplicity
of r as a root of p(λ), n is the degree of Pn(x).

(3) If g(x) = Pn(x)eax cos bx or g(x) = Pn(x)eax sin bx, then yp = xs[(anx
n+ ...+a1x+

a0)e
at cos bx + (bnx

n + ... + b1x + b0)e
at sin bx], where s is the multiplicity of a + ib as a

root of p(λ).

For example, the right hand side of the equation

y′′ + 10y′ + 25y = 12e−5x
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falls into category (2) of the theorem, where r = −5 is a root of multiplicity 2 of the
characteristic polynomial. The polynomial Pn(x) = 1 has degree zero. Hence we make
the guess

y(x) = Ax2e−5x.

Plugging in the equation and simplifying, we obtain A = 6, and hence

y(x) = 6x2e−5x

is a particular solution.

2.3. Non-constant Coefficient, Homogeneous.
In general, there is no easy way of finding a solution. However, if a solution is spotted,

then a fundamental set of solutions can be found by the method of reduction of order,
which will be discussed in the following section.

2.4. Non-constant Coefficient, Non-homogeneous.
This seems the hardest case. The good news is, a particular solution can be found

as long as a fundamental set of solutions of the corresponding homogeneous equation is
given. The technique is called variation of parameters, which is the topic of the next
lecture.

3. Repeated Roots, Reduction of Order

The idea of reduction of order is very simple: Given y1(x), a known solution to a
homogeneous equation, is it possible to obtain another solution in the form v(x)y1(x),
where v is some non-constant function?

For the homogeneous equation

y′′ +
1

x
y′ − 1

x2
y = 0,

y(x) = x is easily seen to be a solution. To test the condition for v(x)y(x) to be a
solution, replace y with vy in the equation, obtaining:

0 = (vy)′′ +
1

x
(vy)′ − 1

x2
(vy)

= v′′y + 2v′y′ + vy′′ +
1

x
v′y +

1

x
vy′ − 1

x2
vy

= v′′y + 2v′y′ +
1

x
v′y +

(
vy′′ +

1

x
vy′ − 1

x2
vy

)
= v′′x+ 3v′.

Note that the condition for v involves only its derivatives, hence we could make the
substitution z = v′, and the condition for v translates to one in z:

z′x+ 3z = 0.

By separation of variables,

z = x−3,

hence

v =

∫
z(x)dx =

−1

2
x−2,
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and another solution of the original equation is

vy = − 1

2x
,

which is clearly independent from y(x) = x.
In general, suppose that y(x) is known for solving the equation y′′+p(x)y′+q(x)y = 0.

Let v(x)y(x) be another solution. Then we have:

0 =(vy)′′ + p(vy)′ + q(vy)

=(v′y + vy′)′ + p(v′y + vy′) + q(vy)

=(v′′y + 2v′y′ + vy′′) + p(v′y + vy′) + q(vy)

=v′′y + (2y′ + py)v′ + v(y′′ + py′ + qy)

=v′′y + (2y′ + py)v′.

Thus, z = v′(x) satisfies the first order separable equation:

z′y + (2y′ + py)z = 0.

Thus, z can be solved. Finally, v(x) can be found by a direct integration of z(x).

Exercise. The method of reduction of order also applies to the constant coefficient
(homogeneous) case, when the characteristic polynomial has repeated roots λ. One
solution is obvious: eλx. Find the fundamental set of solutions.


