
LECTURE 7: EULER’S METHOD

In the experiment below, we are going to explore a numerical method for solving first
order ODEs, called Euler’s Method. The idea is simple: use continuous line segments
to approximate solution curves. To be more precise, supposing that (x0, y0) is on the
solution curve, then for small ∆x, we could use y0 +∆x ·f(x0, y0) as an approximation of
y(x0 + ∆t). Euler’s method suggests us continuing this process, taking (x1, y1) = (x0 +
∆x, y0+∆x ·f(x0, y0)) as the new starting point, using the accurate tangent slope at this
point, and carry out the approximation to obtain (x2, y2) = (x1+∆x, y1+∆x ·f(x1, y1)),
and so on. A pseudocode for this method is as follows.

procedure Euler’s Method for Equation dy
dx

= f(x, y)
(x0, y0)← initialV alue
∆x← stepSize
N ← numSteps

loop:
for (i = 0, i < N, i + +) do

xi+1 = xi + ∆x;
yi+1 = yi + f(xi, yi)∆x;

For the initial value problem

dy

dx
= 1− x− 0.5y, y(0) = 1,

we use Mathematicar to carry out the Euler’s method for step sizes ∆x = 1, 0.5, 0.1
to approximate the solution within {0 ≤ x ≤ 5}. The code and the result are shown
below, where the orange and blue curves represent accurate solutions and approximate
solutions, respectively.

procedure Mathematicar for dy
dx

= 1− x− 0.5y, y(0) = 1
Clear[y];
y[0]=1;
stepSize=1; # set to be 0.5, 0.1 later on
Do[y[n+1]=y[n]+stepSize*(1-stepSize*n-0.5*y[n]),{n,0,5/stepSize-1}];
y[5/stepSize];

table=Table[{N[stepSize*k],y[k]},{k,0,5/stepSize}]
a=ListPlot[table, Joined→True]; #Plotting the piecewise-linear approximation
b=VectorPlot[{1,1-x-0.5*y},{x,0,5},{y,-5,5}]; #Plotting the vector field
c=Plot[{−2e−0.5x(2.5−3e0.5x+e0.5xx)},{x,0,5}, PlotStyle→Orange]; #Plotting the

accurate solution

Show[a,b,c]
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(c) ∆x = 0.1

Figure 1. dy
dx

= 1− x− 0.5y, y(0) = 1

Next, for the initial value problem slightly modified from the one above (with only a
sign change),

dy

dx
= 1− x + 0.5y, y(0) = 1,

we have

procedure Mathematicar for dy
dx

= 1− x + 0.5y, y(0) = 1
Clear[y];
y[0]=1;
stepSize=1; # set to be 0.5, 0.1,0.025 later on
Do[y[n+1]=y[n]+stepSize*(1-stepSize*n+0.5*y[n]),{n,0,5/stepSize-1}];
y[5/stepSize];

table=Table[{N[stepSize*k],y[k]},{k,0,5/stepSize}]
a=ListPlot[table, Joined→True]; #Plotting the piecewise-linear approximation
b=VectorPlot[{1,1-x+0.5*y},{x,0,5},{y,-5,5}]; #Plotting the vector field
c=Plot[{2− e0.5x + 2x},{x,0,5}, PlotStyle→Orange]; #Plotting the accurate solu-

tion

Show[a,b,c]

By looking at the figures, you may have, but are not restricted to, the following four
observations:

(1) The piecewise-linear approximations have better accuracy when we choose smaller
step sizes.
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(d) ∆x = 0.025

Figure 2. dy
dx

= 1− x + 0.5y, y(0) = 1

(2) Within each line segment of the piecewise-linear approximation, the slope at the
starting point is always accurate, even though the starting point itself may not be accu-
rate.

(3) Euler’s method works better for the first equation than the second.
(4) The vector field for the first equation appears “converging” while that for the latter

appears “diverging”.
For the first observation, you may want a rigorous proof. Here, I recommend you solve

through Ex.20, Sec. 2.7. For the second observation, we have more to say. The accuracy
of the slope is just how we define the Euler’s method. The inaccuracy of the end points
are exactly the reason why error might accumulate during the procedure. Combining
with the fourth observation, we see that when the vector field diverges, one has to pay
more for the inaccuracy occurred the middle, and the error at the end could be large,
unless we choose ∆x to be really, really small (Figure 2).


