
LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION
PROBLEM

1. General Solving Procedure

The general nonhomogeneous 1-dimensional heat conduction problem takes the form Eq : [p(x)ux]x − q(x)u+ F (x, t) = r(x)ut, 0 ≤ x ≤ 1, t > 0,
BV : ux(0, t)− h1u(0, t) = 0, ux(1, t)− h2u(1, t) = 0,
IC : u(x, 0) = f(x).

A few remarks are in order. First, the nonhomogeneity is due to the term F (x, t) in the
equation. Second, the boundary conditions as written may be interpreted as assuming
that the rate of heat loss at both ends of the rod is proportional to the temperature there;
for example, setting h1 = 0 would mean that the the left end of the rod is insulated.

Direct application of the method of separation of variables does not work here, since
the expression of F (x, t) is unknown. Rather, knowing that the underlying homogeneous
is relevant to the Sturm-Liouville problem{

L[y] = λr(x)y, 0 ≤ x ≤ 1,
y′(0)− h1y(0) = 0, y′(1)− h2y(1) = 0

turns out to be useful for finding solutions. For convenience, let λk denote the eigenvalues
of this Sturm-Liouville problem; φk the corresponding normalized eigenfunctions.

Now, for each t, view u(x, t) as a function in x. If ux(x, t) is continuous on (0, 1) for
each fixed t, then it is possible to obtain a decomposition into φk’s. Such decompositions
clearly depend on the variable t. Hence, we may write

u(x, t) =
∞∑
k=1

bk(t)φk(x).

Written as such, u(x, t) automatically satisfies (BV). One may then ask whether or not
it satisfies the nonhomogeneous heat equation.

In fact, we need[
p(x)

∞∑
k=1

bk(t)φ
′
k(x)

]
x

− q(x)
∞∑
k=1

bk(t)φk(x) + F (x, t) = r(x)
∞∑
k=1

b′k(t)φk(x).

Rearranging terms, this is equivalent to
∞∑
k=1

bk(t)L[φk] +
∞∑
k=1

b′k(t)r(x)φk(x) = F (x, t).

Using L[φk] = λkr(x)φk gives

r(x)
∞∑
k=1

(b′k(t) + λkbk(t))φk(x) = r(x)
F (x, t)

r(x)
.
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One could use the projection formula to obtain

F (x, t)

r(x)
=
∞∑
k=1

ck(t)φk(x),

where

ck(t) =

∫ 1

0

r(x)
F (x, t)

r(x)
φk(x)dx =

∫ 1

0

F (x, t)φk(x)dx.

Therefore the condition on bk(t) further simplifies to
∞∑
k=1

(b′k(t) + λkbk(t)− ck(t))φk(x) = 0,

or
b′k(t) + λkbk(t) = ck(t), k = 1, 2, 3, ...

Also note that the initial condition u(x, 0) requires that

u(x, 0) =
∞∑
k=1

bk(0)φk(x) = f(x),

leading to

bk(0) =

∫ 1

0

r(x)f(x)φk(x).

Thus, finding bk(t)’s amounts to solving the first order initial value problems{
b′k(t) + λkbk(t) = ck(t),

bk(0) =
∫ 1

0
r(x)f(x)φk(x).

It is easy to see that µk(t) = eλkt are integrating factors. And the solutions are

bk(t) = e−λkt
∫ t

0

ck(s)e
λksds+Bke

−λkt,

where

Bk =

∫ 1

0

r(x)f(x)φk(x).

2. Examples

1. Solve the initial boundary value problem ut = uxx + xe−t, 0 < x < a, t > 0,
ux(0, t) = 0, ux(a, t) = 0,
u(x, 0) = x− a

2
.

Solution. First notice that, for this problem, the domain of x is not [0, 1], hence not
exactly in the standard form; but this does not prevent us from using the idea developed
in the previous section to solve the problem. The associated homogeneous equation is

ut = uxx.

It follows that (by separating the variables) the associated Sturm-Liouville type problem
is {

X ′′ + λX = 0, 0 < x < a,
X ′(0) = X ′(a) = 0.
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By a standard argument, we see that the eigenvalues are

λ0 = 0, λk = (kπ/a)2, (k = 1, 2, ...),

corresponding to the eigenfunctions

X0(x) =
1

2
, Xk(x) = cos

(
kπ

a
x

)
.

(Note that these Xk’s are not normalized. In fact, we do not always need to normalize
them, as the following calculation shows.)

If we let

u(x, t) =
∞∑
k=0

bk(t)Xk(x),

the function u automatically satisfies the boundary condition of the original IBVP. For
it to satisfy the equation, we need

∂

∂t

(
∞∑
k=0

bk(t)Xk(x)

)
=

∂2

∂x2

(
∞∑
k=0

bk(t)Xk(x)

)
+ xe−t,

which is
∞∑
k=0

b′k(t)Xk(x) =
∞∑
k=0

bk(t)X
′′
k (x) + xe−t.

Noting that X ′′k + λXk = 0 and supposing that

x =
∞∑
k=0

ckXk(x),

we have
∞∑
k=0

b′k(t)Xk(x) = −
∞∑
k=0

bk(t)λkXk(x) +
∞∑
k=0

cke
−tXk(x),

or equivalently,
∞∑
k=0

(b′k(t) + λkbk(t)− cke−t)Xk(x) = 0.

To solve for bk(t)’s, it suffices to solve the first order ODEs

b′k(t) + λkbk(t) = cke
−t.

This is easily solved using integrating factors, getting

bk(t) = e−λkt
∫ t

0

cke
−seλksds+ bk(0)e−λkt,

Of course, the parameters ck and bk(0) are still remaining to be computed.
The initial conditions bk(0) are determined by the equality

u(x, 0) =
∞∑
k=0

bk(0)Xk(x) = x− a

2
,
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and the constants ck are determined by

x =
∞∑
k=0

ckXk(x).

Noting that {Xk(x)} = {1/2, cos(πx/a), cos(2πx/a)...}, bk(0) and ck are respectively the
Fourier coefficients when x− a

2
and x are expanded as a cosine series. We have

c0 =
2

a

∫ a

0

xdx = a,

ck =
2

a

∫ a

0

x cos(kπx/a)dx =
a2

(kπ)2
[(−1)k − 1].

Subtracting a/2 from

c0
2

+
∞∑
k=1

ckXk(x)

gives

b0(0) = 0, bk(0) = ck =
a2

(kπ)2
[(−1)k − 1], (k ≥ 1).

This completes solving the original IBVP.

2. Solve the IBVP  ut = uxx + 2 cos πx
L
, 0 < x < L, t > 0,

ux(0, t) = 0, ux(L, t) = 0,
u(x, 0) = x.

Solution. The underlying Sturm-Liouville type BVP is{
X ′′ + λX = 0, 0 < x < L,
X ′(0) = X ′(L) = 0.

This leads to the eigenvalues

λ0 = 0, λk = (kπ/L)2, (k = 1, 2, ...),

and the eigenfunctions

X0(x) =
1

2
, Xk(x) = cos

(
kπ

L
x

)
.

Setting

u(x, t) =
∞∑
k=0

bk(t)Xk(x),

we have that the boundary conditions in the original IBVP are automatically satisfied.
To satisfy the equation, we need

∞∑
k=0

b′k(t)Xk(x) = −
∞∑
k=0

bk(t)λkXk(x) + 2X1(x).

This gives rise to the equations

b′k(t) + λkbk(t) = 0, k 6= 1,
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b′1(t) + λ1b1(t) = 2.

As a result,

bk(t) = bk(0)e−λkt, k 6= 1

by direct integration, and

b1(t) =
2

λ1
+

(
b1(0)− 2

λ1

)
e−λ1t

by using an integrating factor.
Now it suffices to find the bk(0)’s. Note that u(x, 0) = x =

∑∞
k=0 bk(0)Xk(x), and that,

with the choice of Xk(x), bk(0) are simply the Fourier coefficients when x is expanded
as a cosine series of period 2L. That is,

bk(0) =
2

L

∫ L

0

x cos(kπx/L)dx =

{
L2

(kπ)2
[(−1)k − 1], k 6= 0,

L, k = 0.

The solution of the original IBVP is obtained simply by putting together the boxed ex-
pressions.

The following example1 is put in an abstract setting, but the idea of solution is still
along the line as with the previous two examples.

Example 3. Consider the PDE

(t+ 1)ut = −L[u], 0 < x < π, t > 0,

with homogeneous boundary conditions at x = 0 and x = π. Suppose that L is self-
adjoint with eigenvalues λn = n2 (n = 1, 2, ...) and eigenfunctions ψn; and that these
eigenfunctions are complete in the sense that any continuously differentiable function
f(x) on [0, 1] admits a decomposition f(x) =

∑
bkψk with equality holding on (0, 1).

Furthermore, we’re given the initial condition

u(x, 0) = 3ψ1(x) + 4ψ2(x).

What, then, is the solution of this IBVP?
Solution. First write the solution (if exists) as

u(x, t) =
∞∑
n=1

bn(t)ψn(x).

The boundary conditions are automatically satisfied. For the PDE, we need∑
(t+ 1)b′n(t)ψn(x) = −

∑
n2bn(t)ψn(x),

leading to the separable first order ODEs:

(t+ 1)b′n(t) + n2bn(t) = 0.

The solutions are
bn(t) = bn(0)(t+ 1)−n

2

.

To determine bn(0), note that

u(x, 0) =
∑

bn(0)ψn(x) = 3ψ1(x) + 4ψ2(x).

1Adapted from a midterm exam of Fall 2015.
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Hence b1(0) = 3, b2(0) = 4 and all other bk(0)’s are zero.
In sum,

u(x, t) = 3(t+ 1)−1ψ1(x) + 4(t+ 1)−4ψ2(x)

is the solution of the IBVP.


