LECTURE 32: NONHOMOGENEOUS STURM-LIOUVILLE BVP

Recall that the Sturm-Liouville operator L is defined as L[y] = -[p(x)y']' + q(x)y. The non-homogeneous Sturm-Liouville BVP is then by definition

(nhSL)
$$\begin{cases} L[y] = \mu r(x)y + f(x), & 0 \le x \le 1, \\ \alpha_1 y(0) + \beta_1 y'(0) = 0, \\ \alpha_2 y(1) + \beta_2 y'(1) = 0, \end{cases}$$

where r(x) > 0 and μ is a given constant. As usual, L is conveniently viewed as an operator on the space of twice differentiable functions defined on [0,1] which satisfy the boundary conditions above. Also notice that the nonhomogeneity is only assumed to affect only the equation (but not the boundary conditions), comparing to the homogeneous Sturm-Liouville BVP.

As an example, taking p(x) = 1, q(x) = 0 in the operator L; r(x) = 1, f(x) = x and $\mu = 1$ in the equation, the following BVP

$$\left\{ \begin{array}{ll} -y'' = y + x, & 0 \le x \le 1, \\ y(0) = y(1) = 0 \end{array} \right.$$

is clearly a nonhomogeneous Sturm-Liouville BVP in the above sense. Approaching as a usual two-point BVP, we first find that the general solution of the equation

$$y'' + y = -x$$

take the form

$$y(x) = -x + c_1 \cos x + c_2 \sin x;$$

then the boundary conditions enforce that

$$c_1 = 0, \quad c_2 = \frac{1}{\sin 1}.$$

Therefore,

$$y(x) = -x + \frac{\sin x}{\sin 1}$$

is the solution of the BVP.

Now suppose that everything in the above example remains unchanged except that $\mu = 2$ now, leading to the BVP

$$\begin{cases} -y'' = 2y + x, & 0 \le x \le 1, \\ y(0) = y(1) = 0 \end{cases}$$

To solve this, you'll need to solve a new second order ODE, then use the boundary conditions to determine certain coefficients. This imposes no extra technical difficulty, but there seems to be a better approach to take, particularly in light of the properties of eigen-values/eigen-functions associated to a homogeneous Sturm-Liouville problem.

The underlying homogeneous Sturm-Liouville BVP associated to the problem (nhSL) is:

(hSL)
$$\begin{cases} L[u] = \lambda r(x)u, & 0 \le x \le 1, \\ \alpha_1 u(0) + \beta_1 u'(0) = 0, \\ \alpha_2 u(1) + \beta_2 u'(1) = 0. \end{cases}$$

Date: 12/02/16.

We have seen that the eigenvalues/eigenfunctions of (hSL) can be indexed by positive integers and any differentiable function on [0,1] admits a decomposition into a combination of the eigenfunctions (and the convergence holds on the open interval (0,1)). For convenience, let the eigenvalues be λ_k , the *normalized* eigenfunctions ϕ_k (k = 1, 2, 3, ...).

The decomposition property suggests one to write the solution of (nhSL), say y(x), as

$$y(x) = \sum_{k=1}^{\infty} b_k \phi_k.$$

The function y automatically satisfies the boundary conditions in (nhSL). For the equation $L[y] = \mu r(x)y + f(x)$ to hold, we need

$$L\left[\sum_{k=1}^{\infty} b_k \phi_k\right] = \mu r(x) \sum_{k=1}^{\infty} b_k \phi_k + r(x) \frac{f(x)}{r(x)}.$$

The left hand side is, by assuming that the summation and the differential operator L commute,

$$\sum_{k=1}^{\infty} b_k L[\phi_k] = \sum_{k=1}^{\infty} b_k \lambda_k r(x) \phi_k.$$

In the right hand side, f(x)/r(x) admits a decomposition

$$\frac{f(x)}{r(x)} = \sum_{k=1}^{\infty} c_k \phi_k.$$

Thus, the equation becomes

$$\sum_{k=1}^{\infty} b_k \lambda_k r(x) \phi_k = \mu r(x) \sum_{k=1}^{\infty} b_k \phi_k + r(x) \sum_{k=1}^{\infty} c_k \phi_k.$$

Rearranging terms, we obtain

$$\sum_{k=1}^{\infty} (b_k(\lambda_k - \mu) - c_k) r(x) \phi_k(x) = 0.$$

By the projection formula, this implies that

$$b_k(\lambda_k - \mu) = c_k$$

for all k = 1, 2, 3, ...

Of course, whether or not the b_k 's can be solved for depends on the values of μ and c_k .

• If μ is not an eigenvalue of (hSL), that is, for all k, we have $\mu \neq \lambda_k$; it can be concluded that

$$b_k = \frac{c_k}{\lambda_k - \mu}.$$

And the solution of the (nhSL) is given by

$$y(x) = \sum_{k=1}^{\infty} b_k \phi_k(x).$$

• If $\mu = \lambda_m$ for some m, then there are two possibilities. **One**, if $c_m = 0$, then solutions of (nhSL) exist and there is one-parameter family of them (since b_m is now free and all the b_k 's can be solved for using $b_k = c_k/(\lambda_k - \mu)$ for all $k \neq m$). **Two**, if $c_m \neq 0$, the (nhSL) has no solutions.

Example. As an application, we apply the above method to analyse BVPs taking the form

$$\begin{cases} -y'' = \mu y + x, & 0 \le x \le 1, \\ y(0) = y(1) = 0, \end{cases}$$

where μ is a given constant.

The associated homogeneous BVP is easily seen to be

$$\begin{cases} u'' + \lambda u = 0, & 0 \le x \le 1, \\ u(0) = u(1) = 0, \end{cases}$$

with eigenvalues and normalized eigenfunctions being

$$\lambda_k = (k\pi)^2, \quad \phi_k = \sqrt{2}\sin k\pi x.$$

Now, corresponding notations, f(x) = x. Thus, by r(x)=1,

$$c_k = \langle x, \phi_k \rangle_{r(x)} = \sqrt{2} \int_0^1 x \sin k\pi x dx = \frac{\sqrt{2}}{k\pi} (-1)^{k+1}.$$

Now, if $\mu \neq \lambda_k$ for all k, we have

$$b_k = \frac{c_k}{\lambda_k - \mu} = (-1)^{k+1} \frac{\sqrt{2}}{k\pi((k\pi)^2 - \mu)},$$

and

$$y(x) = \sum_{k=1}^{\infty} b_k \phi_k = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\sin k\pi x}{k\pi ((k\pi)^2 - \mu)}$$

is the solution of the nonhomogeneous BVP. Otherwise, if μ is an eigenvalue of the associated homogeneous BVP, noting that all c_k 's are nonzero, we can conclude that there is no solution for the nonhomogeneous BVP.

Exercise. Check, by directly solving the equation then applying the boundary conditions, that the BVP

$$\left\{ \begin{array}{ll} y''+\pi^2y=-x, & 0\leq x\leq 1,\\ y(0)=y(1)=0 \end{array} \right.$$

has no solution.