LECTURE 32: NONHOMOGENEOUS STURM-LIOUVILLE BVP

Recall that the Sturm-Liouville operator L is defined as Lly] = —[p(x)y']' + q(z)y.
The non-homogeneous Sturm-Liouville BVP is then by definition

Lyl = pr(z)y + f(z), 0<x <1,
(nhSL) {  a1y(0) + S1y'(0) =0,
apy(1) + B2y (1) = 0,

where r(x) > 0 and p is a given constant. As usual, L is conveniently viewed as an
operator on the space of twice differentiable functions defined on [0, 1] which satisfy the
boundary conditions above. Also notice that the nonhomogeneity is only assumed to af-
fect only the equation (but not the boundary conditions), comparing to the homogeneous
Sturm-Liouville BVP.

As an example, taking p(x) = 1, ¢(x) = 0 in the operator L; r(x) = 1, f(z) = x and
1 =1 in the equation, the following BVP

{ ' =y+x, 0<z<1,
y(0) =y(1) =0

is clearly a nonhomogeneous Sturm-Liouville BVP in the above sense. Approaching as
a usual two-point BVP, we first find that the general solution of the equation

y'ty=-—u
take the form
y(zr) = —x + ¢y cosx + ¢y sinx;
then the boundary conditions enforce that
1
c1=0, co= ol
Therefore, '
B sin x
ylw) = -2+ 53

is the solution of the BVP.
Now suppose that everything in the above example remains unchanged except that
1 = 2 now, leading to the BVP

{ -y =2y+x, 0<z<l,

To solve this, you’ll need to solve a new second order ODE, then use the boundary

conditions to determine certain coefficients. This imposes no extra technical difficulty,

but there seems to be a better approach to take, particularly in light of the properties
of eigen-values/eigen-functions associated to a homogeneous Sturm-Liouville problem.

The underlying homogeneous Sturm-Liouville BVP associated to the problem (nhSL)

is:

Liu] = M (z)u, 0

(hSL) ¢ aqu(0) + f1u/(0) =

asu(l) + Bou' (1) =
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We have seen that the eigenvalues/eigenfunctions of (hSL) can be indexed by positive
integers and any differentiable function on [0, 1] admits a decomposition into a combi-
nation of the eigenfunctions (and the convergence holds on the open interval (0,1)). For
convenience, let the eigenvalues be A, the normalized eigenfunctions ¢ (k =1,2,3,...).

The decomposition property suggests one to write the solution of (nhSL), say y(x), as

y(@) = by
k=1

The function y automatically satisfies the boundary conditions in (nhSL). For the equa-
tion L[y] = pr(z)y + f(x) to hold, we need

L [Z bkgbk] = ur(z) Z bpor + 7’(1’)%
k=1 k=1

The left hand side is, by assuming that the summation and the differential operator L
commute,

D L[] = > bihr(2) oy
K1 g

In the right hand side, f(z)/r(x) admits a decomposition

) S

@) =
Thus, the equation becomes
D behr(@)dr = pr() Y brr +1(2) Y cxdy
k=1 k=1 k=1
Rearranging terms, we obtain
Z(bkz()\k — 1) = c)r(z)dp(z) = 0.
k=1

By the projection formula, this implies that
br( Ak — 1) =
forall k=1,2,3,...
Of course, whether or not the b;’s can be solved for depends on the values of 1 and
Ck.

e If 11 is not an eigenvalue of (hSL), that is, for all k, we have u # A; it can be

concluded that
Ck

B Ak —
And the solution of the (nhSL) is given by

y(z) = Z brdw ().

o If u = )\, for some m, then there are two possibilities. One, if ¢,, = 0, then
solutions of (nhSL) exist and there is one-parameter family of them (since b,, is
now free and all the b;’s can be solved for using by = ¢ /(A — p) for all k& # m).
Two, if ¢, # 0, the (nhSL) has no solutions.

b,
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Example. As an application, we apply the above method to analyse BVPs taking the
form
-y =py+z, 0<z<1,
{ y(0) = y(1) =0,
where p is a given constant.
The associated homogeneous BVP is easily seen to be

{ v+ =0 0<x<I1,
u(0) = u(l) =0,
with eigenvalues and normalized eigenfunctions being

Ao = (km)%, ¢p = V2sinkmz.
Now, corresponding notations, f(z) = x. Thus, by r(x)=1,

1
2

e = (T, Ok)r(z) = \/5/ rsin kraxdr = ki(—l)kﬂ.

0

T
Now, if u # A for all k, we have

A — |

oo oo . kﬂ"r
— N b — _qykt1_ S
is the solution of the nonhomogeneous BVP. Otherwise, if u is an eigenvalue of the as-

sociated homogeneous BVP, noting that all ¢;’s are nonzero, we can conclude that there
is no solution for the nonhomogeneous BVP.

by

and

Exercise. Check, by directly solving the equation then applying the boundary con-
ditions, that the BVP
{ '+ iy =—x, 0<x<l1,
y(0) =y(1) =0

has no solution.



