LECTURE 32: NONHOMOGENEOUS STURM-LIOUVILLE BVP

Recall that the Sturm-Liouville operator L is defined as $L[y]=-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y$. The non-homogeneous Sturm-Liouville BVP is then by definition

$$
(\mathrm{nhSL})\left\{\begin{array}{l}
L[y]=\mu r(x) y+f(x), \quad 0 \leq x \leq 1, \\
\alpha_{1} y(0)+\beta_{1} y^{\prime}(0)=0, \\
\alpha_{2} y(1)+\beta_{2} y^{\prime}(1)=0,
\end{array}\right.
$$

where $r(x)>0$ and μ is a given constant. As usual, L is conveniently viewed as an operator on the space of twice differentiable functions defined on $[0,1]$ which satisfy the boundary conditions above. Also notice that the nonhomogeneity is only assumed to affect only the equation (but not the boundary conditions), comparing to the homogeneous Sturm-Liouville BVP.

As an example, taking $p(x)=1, q(x)=0$ in the operator $L ; r(x)=1, f(x)=x$ and $\mu=1$ in the equation, the following BVP

$$
\left\{\begin{array}{l}
-y^{\prime \prime}=y+x, \quad 0 \leq x \leq 1, \\
y(0)=y(1)=0
\end{array}\right.
$$

is clearly a nonhomogeneous Sturm-Liouville BVP in the above sense. Approaching as a usual two-point BVP, we first find that the general solution of the equation

$$
y^{\prime \prime}+y=-x
$$

take the form

$$
y(x)=-x+c_{1} \cos x+c_{2} \sin x ;
$$

then the boundary conditions enforce that

$$
c_{1}=0, \quad c_{2}=\frac{1}{\sin 1} .
$$

Therefore,

$$
y(x)=-x+\frac{\sin x}{\sin 1}
$$

is the solution of the BVP.
Now suppose that everything in the above example remains unchanged except that $\mu=2$ now, leading to the BVP

$$
\left\{\begin{array}{l}
-y^{\prime \prime}=2 y+x, \quad 0 \leq x \leq 1 \\
y(0)=y(1)=0
\end{array}\right.
$$

To solve this, you'll need to solve a new second order ODE, then use the boundary conditions to determine certain coefficients. This imposes no extra technical difficulty, but there seems to be a better approach to take, particularly in light of the properties of eigen-values/eigen-functions associated to a homogeneous Sturm-Liouville problem.

The underlying homogeneous Sturm-Liouville BVP associated to the problem (nhSL) is:

$$
(\mathrm{hSL})\left\{\begin{array}{l}
L[u]=\lambda r(x) u, \quad 0 \leq x \leq 1, \\
\alpha_{1} u(0)+\beta_{1} u^{\prime}(0)=0 \\
\alpha_{2} u(1)+\beta_{2} u^{\prime}(1)=0
\end{array}\right.
$$

Date: 12/02/16.

We have seen that the eigenvalues/eigenfunctions of (hSL) can be indexed by positive integers and any differentiable function on $[0,1]$ admits a decomposition into a combination of the eigenfunctions (and the convergence holds on the open interval $(0,1)$). For convenience, let the eigenvalues be λ_{k}, the normalized eigenfunctions $\phi_{k}(k=1,2,3, \ldots)$.

The decomposition property suggests one to write the solution of (nhSL), say $y(x)$, as

$$
y(x)=\sum_{k=1}^{\infty} b_{k} \phi_{k} .
$$

The function y automatically satisfies the boundary conditions in (nhSL). For the equation $L[y]=\mu r(x) y+f(x)$ to hold, we need

$$
L\left[\sum_{k=1}^{\infty} b_{k} \phi_{k}\right]=\mu r(x) \sum_{k=1}^{\infty} b_{k} \phi_{k}+r(x) \frac{f(x)}{r(x)} .
$$

The left hand side is, by assuming that the summation and the differential operator L commute,

$$
\sum_{k=1}^{\infty} b_{k} L\left[\phi_{k}\right]=\sum_{k=1}^{\infty} b_{k} \lambda_{k} r(x) \phi_{k}
$$

In the right hand side, $f(x) / r(x)$ admits a decomposition

$$
\frac{f(x)}{r(x)}=\sum_{k=1}^{\infty} c_{k} \phi_{k}
$$

Thus, the equation becomes

$$
\sum_{k=1}^{\infty} b_{k} \lambda_{k} r(x) \phi_{k}=\mu r(x) \sum_{k=1}^{\infty} b_{k} \phi_{k}+r(x) \sum_{k=1}^{\infty} c_{k} \phi_{k} .
$$

Rearranging terms, we obtain

$$
\sum_{k=1}^{\infty}\left(b_{k}\left(\lambda_{k}-\mu\right)-c_{k}\right) r(x) \phi_{k}(x)=0
$$

By the projection formula, this implies that

$$
b_{k}\left(\lambda_{k}-\mu\right)=c_{k}
$$

for all $k=1,2,3, \ldots$
Of course, whether or not the b_{k} 's can be solved for depends on the values of μ and c_{k}.

- If μ is not an eigenvalue of (hSL), that is, for all k, we have $\mu \neq \lambda_{k}$; it can be concluded that

$$
b_{k}=\frac{c_{k}}{\lambda_{k}-\mu} .
$$

And the solution of the (nhSL) is given by

$$
y(x)=\sum_{k=1}^{\infty} b_{k} \phi_{k}(x) .
$$

- If $\mu=\lambda_{m}$ for some m, then there are two possibilities. One, if $c_{m}=0$, then solutions of (nhSL) exist and there is one-parameter family of them (since b_{m} is now free and all the b_{k} 's can be solved for using $b_{k}=c_{k} /\left(\lambda_{k}-\mu\right)$ for all $\left.k \neq m\right)$. Two, if $c_{m} \neq 0$, the (nhSL) has no solutions.

Example. As an application, we apply the above method to analyse BVPs taking the form

$$
\left\{\begin{array}{l}
-y^{\prime \prime}=\mu y+x, \quad 0 \leq x \leq 1 \\
y(0)=y(1)=0,
\end{array}\right.
$$

where μ is a given constant.
The associated homogeneous BVP is easily seen to be

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda u=0, \quad 0 \leq x \leq 1 \\
u(0)=u(1)=0,
\end{array}\right.
$$

with eigenvalues and normalized eigenfunctions being

$$
\lambda_{k}=(k \pi)^{2}, \quad \phi_{k}=\sqrt{2} \sin k \pi x .
$$

Now, corresponding notations, $f(x)=x$. Thus, by $r(x)=1$,

$$
c_{k}=\left\langle x, \phi_{k}\right\rangle_{r(x)}=\sqrt{2} \int_{0}^{1} x \sin k \pi x d x=\frac{\sqrt{2}}{k \pi}(-1)^{k+1} .
$$

Now, if $\mu \neq \lambda_{k}$ for all k, we have

$$
b_{k}=\frac{c_{k}}{\lambda_{k}-\mu}=(-1)^{k+1} \frac{\sqrt{2}}{k \pi\left((k \pi)^{2}-\mu\right)},
$$

and

$$
y(x)=\sum_{k=1}^{\infty} b_{k} \phi_{k}=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{\sin k \pi x}{k \pi\left((k \pi)^{2}-\mu\right)}
$$

is the solution of the nonhomogeneous BVP. Otherwise, if μ is an eigenvalue of the associated homogeneous BVP, noting that all c_{k} 's are nonzero, we can conclude that there is no solution for the nonhomogeneous BVP.

Exercise. Check, by directly solving the equation then applying the boundary conditions, that the BVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\pi^{2} y=-x, \quad 0 \leq x \leq 1, \\
y(0)=y(1)=0
\end{array}\right.
$$

has no solution.

