
LECTURE 31: THE STURM-LIOUVILLE BVP

In the preceding lecture, we derived the Sturm-Liouville type boundary value problems
as a generalization of the heat equations in a rod. Naturally, the next questions are:

(1) What can we say about the eigenvalues and eigenfunctions of a Sturm-Liouville
problem?

(2) If the eigenvalues and eigenfunctions are found, would they help us express solu-
tions of the original heat conduction problem?

Recall that in the simple case

X ′′ + λX = 0, X(0) = X(1) = 0,

which is encountered in the process of solving the heat equation ut = α2uxx in a rod of
length 1 with the zero boundary conditions , the eigenvalues are (nπ)2 and the eigen-
functions are Xn(x) = sinnπx. Then we considered the superposition

u(x, t) =
∞∑
n=1

cnXn(x)Tn(t),

and used the initial condition u(x, 0) = f(x) to determine the coefficients cn. That the
sum

∑∞
n=1 cnXn(x)Tn(0) equals f(x) at all continuous points is a result of the fact that

the series expansion of f(x) is a sine series and the Fourier convergence theorem.

Now in the more general setting, even if we could find all eigenfunctions of a Sturm-
Liouville problem, say Xn(x), we are not sure whether the coefficients in the sum∑∞

n=1 cnXn(x)Tn(t) can be determined by the initial condition, nor are we sure that,
if cn’s can be found, the sum

∑∞
n=1 cnXn(x)Tn(0) converges to f(x) nicely (i.e., an ana-

logue of the Fourier convergence theorem).

It turns out that the crucial properties of the simple case are shared by the more
general Sturm-Liouville problems. They are the orthogonality between the eigenfunctions
yn(x) and the convergence theorem of expanding a “nice” function f(x) as a yn(x)-series.
These results can be summarized in five theorems. Before stating them, let us fix some
definitions and notations.

1. Definitions and Notations

(SL): The Sturm-Liouville boundary value problem{
[p(x)y′]′ − q(x)y + λr(x)y = 0, 0 < x < 1,
α1y(0) + α2y

′(0) = β1y(1) + β2y
′(1) = 0.

We also assume that p(x), r(x) > 0 for all 0 < x < 1; (α1, α2), (β1, β2) 6= (0, 0).
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L[y]: We define the linear operator L[y] as

L[y] = −[p(x)y′]′ + q(x)y,

so that the equation in (SL) can be written as

L[y] = λr(x)y.

〈·, ·〉H : The Hermitian L2-inner product of two complex-valued functions defined on the

interval [0, 1], defined as

〈u, v〉H :=

∫ 1

0

u(x)v(x)dx,

where the over-bar denotes the complex conjugate: a+ ib = a− ib.

〈·, ·〉r(x): For r(x) > 0 on [0, 1], we define the L2-inner product of two real functions

u(x), v(x) on [0, 1], with weight function r(x), as

〈u, v〉r(x) =

∫ 1

0

r(x)u(x)v(x)dx.

Functions orthonormal under 〈·, ·〉r(x): A sequence of functions φ1(x), φ2(x), ... is said to

be orthonormal under the inner product 〈·, ·〉r(x) if

〈φn(x), φm(x)〉r(x) = 0, n 6= m,

and
〈φn(x), φn(x)〉r(x) = 1, n = 1, 2, 3, ...

In particular, a list of functions satisfying the first condition above is said to be orthog-
onal. Functions satisfying the second condition are said to be normalized.

Exercise. Given function u(x) defined on [0, 1], show that the normalization of u(x) in
the sense of the inner product 〈·, ·〉r(x) is

(〈u(x), u(x)〉r(x))−
1
2u(x).

Hint: Use the bilinearity of the inner product.

2. Theorems

Theorem 1. If u(x), v(x) both satisfy the boundary condition in (SL), then

〈L[u], v〉H = 〈u, L[v]〉H .
In other words, the linear operator L is self-adjoint, restricted to the vector space of
functions satisfying the BV of (SL).

Theorem 2. All eigenvalues of (SL) are real.

Theorem 3. If φm, φn are eigenfunctions of L with eigenvalues λm, λn, i.e.,

L[φm] = λmr(x)φm, L[φn] = λnr(x)φn,

then
〈φm, φn〉r(x) = 0.
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Theorem 4. All eigenvalues of (SL) form an infinite sequence:

λ1 < λ2 < λ3 < ... < λn...

with the property

lim
n→∞

λn =∞.

Moreover, the eigenspace of each eigenvalue is 1-dimensional.

Theorem 5. Given f(x) with f, f ′ piecewise continuous on [0, 1]. Let ψ1, ψ2, ... be
all the normalized eigenfunctions of (SL), then the sum

∞∑
n=1

cnψn(x)

converges to f(x+)+f(x−)
2

on (0, 1), where cn’s are calculated by

cn = 〈f(x), ψn〉r(x).

3. Examples

In this section, we give two examples to help us understand what the five theorems
are saying.

Example 1. In (SL), take p(x) = r(x) = 1, q(x) = 0, and α1 = β1 = 1, α2 = β2 = 0.
We thus have the familiar two-point boundary value problem:{

y′′ + λy = 0.
y(0) = y(1) = 0.

Previously, we only checked for the real λ’s and found the eigenvalues to be (nπ)2 and
the eigenfunctions sinnπ. This matches the result of Theorem 4 about the distribution
of eigenvalues and the dimension of each eigenspace.

Furthermore, since we have set r(x) = 1, the inner product 〈·, ·〉r(x) is just the usual
L2-inner product. We know that {sinnπx}∞n=1 form an orthogonal set in the sense of
L2-inner product on [0, 1]. Thus, the conclusion of Theorem 3 is checked.

Now we normalize sinnπx. Note that

〈sinnπx, sinnπx〉r(x) =

∫ 1

0

sin2 nπxdx =

∫ 1

0

1− cos 2nπx

2
dx =

1

2
.

Therefore, the normalized eigenfunctions are

ψn(x) =
√

2 sinnπx.

According to Theorem 5, given a function f(x), we could calculate the coefficients cn:

cn = 〈f(x), ψn(x)〉r(x) =

∫ 1

0

√
2 sinnπxf(x)dx.
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Therefore,
∞∑
n=1

cnψn(x) =
∞∑
n=1

(
2

∫ 1

0

sinnπf(x)dx
)

sinnπx

converges to f(x) at all continuous points of f . You may realize that this conclusion is

identical to the one given by the Fourier convergence theorem and that 2
∫ 1

0
sinnπf(x)dx

are exactly the Fourier coefficients when we expand f(x) as a sine series.

You may ask now, what about Theorem 1 and 2? In fact, theorem 1, once proven,
leads to theorem 2, which further leads to theorem 3. We will see the proofs in the next
section. Of course, it is a good exercise to try to prove Theorem 1 in the setting of
Example 1.

Exercise. As in Example 1, verify the conclusions of Theorem 3-5 for the following
choice of functions/constants in (SL):

p(x) = r(x) = 1, q(x) = 0. α1 = β1 = 0, α2 = β2 = 1.

You may realize that this two-point boundary value problem arises in the heat conduc-
tion problem when both ends are insulated.

Example 2. In (SL), set p(x) = r(x) = 1, q(x) = 0. Also set α1 = 1, α2 = 0, β1 =
β2 = 1. We thus have the two-point boundary value problem, which we studied as an
example in Lecture 23: {

y′′ + λy = 0,
y(0) = 0, y(1) + y′(1) = 0.

Previously, we found all the eigenvalues of this problem to be λn = µ2
n where µn are all

the positive values which satisfy

µn = − tanµn.

And the eigenfunctions are

yn(x) = sinµnx.

This verifies Theorem 4.

Theorem 3 says that all the yn(x)’s are mutually orthogonal under 〈·, ·〉r(x), which is
just the L2-inner product since r(s) = 1. Let us see if this is true by direct calculation.
By the definition of L2-inner product, we have

〈yn(x), ym(x)〉 =

∫ 1

0

sinµnx sinµmxdx

=

∫ 1

0

1

2
[cos(µn − µm)x− cos(µn + µm)x]dx

=
1

2

[ 1

µn − µm
sin(µn − µm)− 1

µn + µm
sin(µn + µm)

]
= ...

We could have continued the calculation and by using µi = − tanµi (i = m,n), ob-
taining 〈yn(x), ym(x)〉 = 0. However, the theorem exempts us from carrying out all the
calculations. As you will see later, the orthogonality result follows just from simple linear
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algebra.

As mentioned before, Theorem 5 enables us to expand a function f(x) as a yn-series.
First, we normalize yn(x). Note that

〈yn(x), yn(x)〉r(x) =

∫ 1

0

sin2 µnxdx

=

∫ 1

0

1− cos 2µnx

2
dx

=
1

2
− 1

4µn
sin 2µn.

Therefore, the normalized eigenfunctions are

ψn(x) =
sinµnx(

1
2
− 1

4µn
sin 2µn

) 1
2

.

If we denote
(
1
2
− 1

4µn
sin 2µn

)− 1
2 as kn, then

cn = 〈f(x), ψn(x)〉r(x) =

∫ 1

0

f(x)knyn(x)dx = kn

∫ 1

0

f(x) sinµnxdx,

and formally,

f(x) =
∞∑
n=1

cnψn(x) =
∞∑
n=1

(
k2n

∫ 1

0

f(x) sinµnxdx
)

sinµnx.

4. Proofs of Theorems 1-3

In this section, we prove Theorem 1-3 in section 2. Proofs of Theorems 4 and 5 is
beyond our current scope.

Proof of Theorem 1. The proof is pure calculation, in which we are going to use in-
tegration by parts twice. Given u, v satisfying the boundary conditions of (SL), we have

〈L[u], v〉H =

∫ 1

0

(−[p(x)u′]′ + q(x)u)vdx

= −
∫ 1

0

vd(p(x)u′) +

∫ 1

0

q(x)uvdx

= −vp(x)u′
∣∣∣1
0

+

∫ 1

0

v′p(x)u′dx+

∫ 1

0

q(x)uvdx

= −vp(x)u′
∣∣∣1
0

+

∫ 1

0

v′p(x)du(x) +

∫ 1

0

q(x)uvdx

= −vp(x)u′
∣∣∣1
0

+ v′p(x)u
∣∣∣1
0
−
∫ 1

0

[p(x)v′]′udx+

∫ 1

0

q(x)uvdx

= −vp(x)u′
∣∣∣1
0

+ v′p(x)u
∣∣∣1
0

+ 〈u, L[v]〉H .
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Thus, to prove Theorem 1, it suffices to show that

−vp(x)u′
∣∣∣1
0

+ v′p(x)u
∣∣∣1
0

= 0,

which is just
p(x)[−vu′(1) + vu′(0) + v′u(1)− v′u(0)] = 0.

Note that

−vu′(1) + vu′(0) + v′u(1)− v′u(0) = det

(
v′ v
u′ u

)
(1)− det

(
v′ v
u′ u

)
(0).

On the other hand,(
v′ v
u′ u

) ∣∣∣
x=0

(
α2

α1

)
= 0,

(
v′ v
u′ u

) ∣∣∣
x=1

(
β2
β1

)
= 0,

where (α1, α2), (β1, β2) 6= (0, 0). Therefore,

det

(
v′ v
u′ u

)
(1) = det

(
v′ v
u′ u

)
(0) = 0.

This completes the proof of Theorem 1.

Proof of Theorem 2. Let λ be an eigenvalue and φ an associated eigenfunction. We
have

〈L[φ], φ〉H =

∫ 1

0

λr(x)φ(x)φ(x)dx = λ

∫ 1

0

r(x)|φ(x)|2dx.

Also, since r(x) is real-valued,

〈φ, L[φ]〉H =

∫ 1

0

φ(x)λr(x)φ(x)dx = λ

∫ 1

0

r(x)|φ(x)2|dx.

By Theorem 1, 〈L[φ], φ〉H = 〈φ, L[φ]〉H . Hence

(λ− λ)

∫ 1

0

r(x)|φ(x)|2dx = 0.

By r(x) > 0 and φ(x) 6= 0, we have
∫ 1

0
r(x)|φ(x)|2dx 6= 0. Therefore, λ−λ = 0. In other

words, λ is real.

Proof of Theorem 3. Let λm 6= λn be eigenvalues. Let φm, φn be the corresponding
(real-valued) eigenfunctions. We have,

〈L[φm], φn〉H = 〈λmr(x)φm, φn〉H = λm〈r(x)φm, φn〉H = λm〈φm, φn〉r(x),
where we used the fact that for real-valued functions u, v, 〈r(x)u, v〉H = 〈u, r(x)v〉H =
〈u, v〉r(x).

Similarly, because λn is real,

〈φm, L[φn]〉H = 〈φm, λnr(x)φn〉H = λn〈φm, r(x)φn〉H = λn〈φm, φn〉r(x).
By Theorem 1,

〈L[φm], φn〉H = 〈φm, L[φn]〉H .
Therefore,

λm〈φm, φn〉r(x) = λn〈φm, φn〉r(x).
Since λm 6= λn, we must have

〈φm, φn〉r(x) = 0.
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This completes the proof.


