
LECTURE 30: THE OCCURRENCE OF TWO-POINT BOUNDARY
VALUE PROBLEMS

As we have seen in the heat and wave equations with 1-dimensional space, or the
Laplace equation with 2-dimensional space, the method of separation of variables will
lead us to two ordinary differential equations. Together with the boundary conditions,
we would encounter problems of the two-point boundary value type. Note that these
two-point boundary value problems are quite specific in that the equation usually take
the form

y′′ + λy = 0,

with boundary values being either

y(0) = y(L) = 0,

or

y′(0) = y′(L) = 0.

In this lecture, we will introduce a broader class of boundary value problems, generalizing
both the ODEs and the boundary values we have seen previously. We will start with an
example, and see how the same principle we used to solve simpler problems continues to
work in less familiar, specific problems. Then we introduce the physical motivation for
the broader class of equations: the Sturm-Liouville BVPs.

1. Example

Let us solve the two-point boundary value problem{
y′′ + λy = 0,
y(0) = 0, y′(1) + y(1) = 0,

that is, to find all the eigenvalues and eigenfunctions of the equation.

As before, we consider three cases of λ: λ = 0, λ < 0, λ > 0. (You may ask, why
not consider the case that λ is a complex number? This will be answered in the next
lecture.)

• λ = 0. The general solution of the equation is

y(x) = c1x+ c2.

The boundary conditions require

c2 = 0, 2c1 + c2 = 0,

which is

c1 = c2 = 0.

Hence, λ = 0 is not an eigenvalue of the problem.
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• λ < 0. Let λ = −µ2, where µ > 0. The general solution of the equation is

y(x) = c1e
µx + c2e

−µx.

The boundary values require,{
c1 + c2 = 0,
µ(c1e

µ − c2e−µ) + c1e
µ + c2e

−µ = 0.

In matrix form, this is[
1 1

(µ+ 1)eµ (1− µ)e−µ

] [
c1
c2

]
= 0.

There exists a nonzero pair (c1, c2) so that the above equality is satisfied if and
only if the determinant of the coefficient matrix vanishes, which is equivalent to

µ =
e−µ − eµ

eµ + e−µ
.

However, this never holds for µ > 0, since the right hand side is negative, by the
monotonicity of the exponential function.
• λ > 0. Let λ = µ2, µ > 0. The general solution of the equation is

y(x) = c1 cosµx+ c2 sinµx.

The boundary values require{
c1 = 0,
−c1µ cosµ+ c2µ cosµ+ c1 cosµ+ c2 sinµ = 0.

It is easy to see that λ is an eigenvalue if and only if

µ cosµ+ sinµ = 0.

Note that this equality cannot hold unless cosµ 6= 0, thus it is equivalent to

µ = − tanµ.

This tells us that the values of µ whose square are eigenvalues are exactly the
x-coordinates of the intersection points of the graphs of

y = x,

and

y = − tanx.

Exercise. Plot the graphs of y = x and y = − tanx and see that their inter-
section points are infinitely many. If we number the x-coordinate of these points
from left to right as µn(n = 1, 2, 3, ...) then it can be observed that

µn ≈
2n− 1

2
π,

when n is large enough. (Note: For large n, µn is large, therefore − tanµn is
large, which means µn must be close to an odd multiple of π

2
from the right.)
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We conclude that the eigenvalues of the original two-point BVP are

λn = µ2
n,

where µn = − tanµn, (0 < µ1 < µ2 < ...), and the eigenfunctions are

yn(x) = sinµnx.

2. Arise of Sturm-Liouville BVPs

In the derivation of the heat equation in a rod (Lecture 19), we introduced the con-
stants:

• λ: measuring the capability of the material to conduct heat;
• µ: measuring the capability of the material to restore heat;
• A: area of the cross section of the rod.

We assumed that there is no heat loss from the side (cylindrical) boundary of the rod.
Also, we considered only two kinds of boundary values: zero/constant temperature at
both ends, insulated ends.

In a more general setting, the rod may not be made uniformly of the same material,
and the cross section may not be a constant. Thus, λ, µ,A now may depend on x. Also,
closer to reality, we could assume that the heat loss rate `(x) (per unit length) through
the side boundary to be proportional (for each x value) to the temperature u(x, t). In
this case, a similar analysis as before leads to

∆H = −A(x)λ(x)
∂u

∂x
(x, t)∆t+ A(x+ ∆x)λ(x+ ∆x)

∂u

∂x
(x+ ∆x, t)∆t−`(x)u(x, t)∆x∆t

= µ(x)
∂u

∂t
(x, t)∆t∆x.

Passing to the limit ∆x→ 0, we could obtain

[A(x)λ(x)ux(x, t)]x − `(x)u(x, t) = µ(x)ut(x, t).

On the other hand, you can check that the boundary condition

α1u(0, t) + α2ux(0, t) = 0, β1u(L, t) + β2ux(L, t) = 0

generalizes the two kinds of boundary values we have studied before: u(0, t) = u(L, t) = 0
and ux(0, t) = ux(L, t) = 0, by setting values to α1, α2, β1, β2.

To put in a more concise form, we are now considering the boundary-value problem:

(I)

{
[p(x)ux]x − q(x)u = r(x)ut, t > 0, 0 < x < L,
α1u(0, t) + α2ux(0, t) = 0, β1u(L, t) + β2ux(L, t) = 0, t > 0.

To solve (I), we first look for solutions of the form

u(x, t) = X(x)T (t).
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Plugging in the equation gives us

r(x)XT ′ = [p(x)X ′]′T − q(x)XT,

which is equivalent to
T ′

T
=

[p(x)X ′]′

r(x)X
− q(x)

r(x)
.

By a familiar argument, we know that both the LHS and RHS in the equality above are
equal to a same constant −λ. Thus,{

[p(x)X ′]′ − q(x)X + λr(x)X = 0, 0 < x < L,
T ′ + λT = 0, T > 0.

Plugging u(x, t) = X(x)T (t) in the boundary conditions, it is easy to see that X(x)
satisfies

α1X(0) + α2X
′(0) = 0, β1X(L) + β2X

′(L) = 0.

Now, note that given λ, T (t) is evident from the equation it satisfies. So our cen-
tral problem is finding eigenvalues and eigenfunctions of the two-point boundary value
problem that X(x) satisfies:{

[p(x)X ′]′ − q(x)X + λr(x)X = 0, 0 < x < L,
α1X(0) + α2X

′(0) = 0, β1X(L) + β2X
′(L) = 0.

For simplicity, one could scale the length L to be 1 by changing the units. Also, in order
for the boundary conditions to be valid, we assume (α1, α2) 6= (0, 0) and (β1, β2) 6= (0, 0).
Thus, the two-point BVP for X(x) is of the form

(SL)

{
[p(x)y′]′ − q(x)y + λr(x)y = 0, 0 < x < 1,
α1y(0) + α2y

′(0) = 0, β1y(1) + β2y
′(1) = 0,

which we call a Sturm-Liouville boundary value problem.


