
LECTURE 29: THE LAPLACE EQUATION

Previously, we have studied the heat equation with 1-dimensional space (i.e., the
equation of heat conduction in a rod):

α2uxx = ut.

It can be derived that when the dimension of the space is two or three (think of a round
disk or a solid ball in each case), the heat equations are

α2(uxx + uyy) = ut,

and

α2(uxx + uyy + uzz) = ut,

respectively.

We can ask, what is the steady state of the heat distribution? That is, given certain
constant boundary condition, what is the solution of the heat equation which does not
depend on t, i.e., ut = 0? In particular, we have in mind the Dirichlet Problem, and
we focus on the case of two dimensional space:{

uxx + uyy = 0, (x, y) ∈ Ω,
u(x, y) = f(x, y), (x, y) ∈ ∂Ω,

where Ω denotes the two dimensional domain and ∂Ω is its boundary. (For instance,
when Ω is a round disk, then ∂Ω is its boundary circle, etc.)

In this lecture, we focus on two kinds of domains:

• Ω is a rectangle, its boundary consisting of four line segments.
• Ω is a round disk of radius a, its boundary being the circle of radius a and the

same center.

1. Domain Ω = [0, a]× [0, b]

In this case, because the boundary of the domain consists of four line segments, the
Dirichlet problem in general takes the form uxx + uyy = 0, (x, y) ∈ (0, a)× (0, b),

u(x, 0) = g1(x), u(x, b) = g2(x), x ∈ (0, a),
u(0, y) = f1(y), u(a, y) = f2(y), y ∈ (0, b).

However, we claim that to solve this boundary value problem, we need only to solve for
the four simpler boundary conditions:

(1) u(x, 0) = g1(x), u(x, b) = 0, u(0, y) = 0, u(a, y) = 0;
(2) u(x, 0) = 0, u(x, b) = g2(x), u(0, y) = 0, u(a, y) = 0;
(3) u(x, 0) = 0, u(x, b) = 0, u(0, y) = f1(y), u(a, y) = 0;
(4) u(x, 0) = 0, u(x, b) = 0, u(0, y) = 0, u(a, y) = f2(y).
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Exercise. Convince yourself that this claim is valid. Hint: Note that the equation is
linear and consider superposing the solutions of the four sub-BVP’s.

Therefore, we only focus on one of the four listed boundary values, say the fourth one,
and consider solving uxx + uyy = 0, (x, y) ∈ (0, a)× (0, b),

u(x, 0) = 0, u(x, b) = 0, x ∈ (0, a),
u(0, y) = 0, u(a, y) = f(y), y ∈ (0, b).
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Figure 1. Laplace Equation with Dirichlet Boundary Condition (4).

1.1. Separation of Variables. Consider solution of the form

u(x, y) = X(x)Y (y).

Plugging in the Laplace equation, and by a familiar argument, we obtain

X ′′

X
= −Y

′′

Y
= λ,

where λ is some constant. This gives us two ODEs,{
X ′′ − λX = 0,
Y ′′ + λY = 0.

1.2. Homogeneous Boundary Conditions. Now consider the three pieces of bound-
ary conditions which are homogeneous. We have

X(x)Y (0) = X(0)Y (y) = X(x)Y (b) = 0,

for all possible x, y. Therefore,

Y (0) = Y (b) = 0, X(0) = 0.

Combined with the two ODEs we obtained using separation of variables, we can see
that Y (y) solves the two-point boundary value problem{

Y ′′ + λY = 0,
Y (0) = Y (b) = 0.

Once more, we are in a familiar situation. And we could claim that the eigenvalues are

λ =
(nπ
b

)2
, n = 1, 2, 3, ...
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and the eigenfunctions are

Yn(y) = sin
nπ

b
y.

Further more, for each n and the corresponding λ = n2π2

b2
we have for X(x):{

X ′′ − n2π2

b2
X = 0,

X(0) = 0.

The equation (in X) itself has the general solution

Xn(x) = k1e
nπ
b
x + k2e

−nπ
b
x,

for some constants k1, k2. Then the boundary value Xn(0) = 0 requires

k1 + k2 = 0.

Therefore,
Xn(x) = k1e

nπ
b
x − k1e−

nπ
b
x,

and, up to a multiplicative constant, this is just

Xn(x) = sinh
(nπx

b

)
.

Now we have obtained

un(x, y) = Xn(x)Yn(y) = sinh
(nπx

b

)
sin
(nπy

b

)
, n = 1, 2, 3, ...

1.3. Non-homogeneous Boundary Value. Finally, we consider the superposition of
un(x, y), which, as usual, solves the linear equation together with the three pieces of
homogeneous boundary conditions.

u(x, y) =
∞∑
n=1

cnun(x, y).

The last non-homogeneous piece of the boundary values requires

u(a, y) = f(y) =
∞∑
n=1

cn sinh
nπa

b
sin

nπy

b
.

Therefore, noting that f(y) is expanded as a sine series, we have the coefficients cn:

cn =
(

sinh
nπa

b

)−1
· 2

b

∫ b

0

f(y) sin
nπy

b
dy.

This completes the formal solution of the Dirichlet problem with boundary condition (4).

2. Domain Ω = B(0, a)

Let B(0, a) denote the disk centered at the origin with radius a > 0. Using polar
coordinates, the Laplace equation uxx + uyy = 0 can be rewritten as

urr +
1

r
ur +

1

r2
uθθ = 0.

Exercise. Check the previous statement about the equivalent form of the Laplace equa-
tion in different coordinate systems.
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In this case, the Dirichlet boundary value problem takes the form{
urr + 1

r
ur + 1

r2
uθθ = 0, r ∈ [0, a), θ ∈ R,

u(a, θ) = f(θ), θ ∈ R,

for some function f(θ).

Particularly, we should note that u(x, θ) represents the distribution of temperature in
a disk, it must be periodic in θ with period 2π. Same for f(x). In symbols, this is just

f(θ) = f(θ + 2π), θ ∈ R.

u(x, θ) = u(x, θ + 2π), x ∈ [0, a), θ ∈ R.

Moreover, the temperature cannot be infinite, thus we also require

u(x, θ) <∞
for any valid solution of the Dirichlet problem

Now we proceed to solve the equation.

2.1. Separation of Variables. Consider solutions of the form

u(r, θ) = R(r)Θ(θ).

Plugging in the equation, we have

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0,

By a familiar argument, this leads to

r2
R′′

R
+ r

R′

R
= −Θ′′

Θ
= λ,

for some constant λ.

Thus, we have two ODEs to consider:{
r2R′′ + rR′ − λR = 0,
Θ′′ + λΘ = 0.

In particular, note that the ODE in R(r) is an Euler equation.

2.2. Valid Solutions. As noted before, a solution is valid only if Θ(θ) is periodic with
period 2π. On the other hand, the equation that Θ satisfies gives the three possibilities:

• λ = −µ2 < 0. The only solutions are in the form

Θ(θ) = c1e
µθ + c2e

−µθ,

which is not periodic unless c1 = c2 = 0. Thus, there are no negative eigenvalues.
• λ = 0. Again, periodicity requires Θ(θ) to be a constant. On the other hand, we

have, by the solutions of the Euler equation

r2R′′ + rR′ = 0,

that

R(r) = k1 + k2 ln r.
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This time, by the boundedness of solutions, we must have k2 = 0, since ln r →
−∞ as r → 0+. Hence, R(r) is also a constant. We conclude that λ = 0 is an
eigenvalue and the only eigenfunction (up to a multiplicative constant) is

u0(r, θ) =
1

2
.

• λ = µ2 > 0. The ODEs now become{
r2R′′ + rR′ − µ2R = 0,
Θ′′ + µ2Θ = 0.

We have the general solutions

R(r) = k1r
µ + k2r

−µ,

Θ(θ) = d1 sinµθ + d2 cosµθ,

for arbitrary constants k1, k2, d1, d2.

Again, the boundedness of solutions forces k2 = 0, and that the Θ(θ) must
have 2π as a period requires µ to be a positive integer. Therefore, we can choose

Rn(r) = rn,

Θn(θ) = d1 sinnθ + d2 cosnθ.

And
un(r, θ) = rn(pn sinnθ + qn cosnθ), n = 1, 2, 3, ...

2.3. Boundary Condition. Now, we consider a superposition of the eigenfunctions
and find the coefficients so that the superposition fits the boundary value. First, let

u(r, θ) =
a0
2

+
∞∑
n=1

rn(pn sinnθ + qn cosnθ).

Then the boundary value requires

u(a, θ) = f(θ) =
a0
2

+
∞∑
n=1

an(pn sinnθ + qn cosnθ).

Since f(θ) has the period 2π, we have the coefficients

a0 =
1

π

∫ π

−π
f(θ)dθ,

pn =
1

πan

∫ π

−π
f(θ) sinnθdθ, n = 1, 2, 3, ...

qn =
1

πan

∫ π

−π
f(θ) cosnθdθ. n = 1, 2, 3...

This, formally, completes solving the Dirichlet problem on a round disk. Of course, as
in all the BVP’s we have studied, one could ask about the convergence of the solution
and whether the formal solution converges at the boundary to the exact boundary con-
dition. In fact, the answer is not hard to formulate, according to the Fourier convergence
theorem.


