
LECTURE 28: ONE-DIMENSIONAL WAVE EQUATION:
INITIAL-BOUNDARY VALUE PROBLEMS

Pick an elastic string of length L, hold it tight at the both ends, then pull the middle
of the string away from its resting position, release it from static, we’ll observe an unique
motion of the string over time. Mathematically, the condition we have put on the string
are exactly the following:

• Fixed ends: u(0, t) = u(L, t) = 0.
• Pulling the string from the resting position: u(x, 0) = f(x).
• String released from static: ut(x, 0) = 0.

Clearly, this is boundary values together with two pieces of initial values (since the equa-
tion has the second derivative with respect to t).

More generally, we could consider the following initial-boundary value problem

(I)

 utt = c2uxx, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L.

Furthermore, this problem can be reduced to two simpler problems, one with zero initial
velocity, the other with zero initial value.

(II)

 utt = c2uxx, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = f(x), ut(x, 0) = 0, 0 ≤ x ≤ L.

(III)

 utt = c2uxx, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = 0, ut(x, 0) = g(x), 0 ≤ x ≤ L.

Exercise. Show that if u1(x, t) is a solution of (II) and u2(x, t) is a solution of (III),
then u1(x, t) + u2(x, t) is a solution of (I), assuming that f(x), g(x) in (I) are the same
as those in (II) and (III).

1. Zero Initial Velocity

That is, equation (II). Its solution is similar to that of the heat equations. First
consider separation of variables, then use boundary values to narrow down the forms of
the solution, finally, consider a superposition of solutions which also satisfies the initial
values.

1.1. Separation of Variables.
Let

u(x, t) = X(x)T (t).

If this solve the wave equation, we must have

X(x)T ′′(t) = c2X ′′(x)T (t),
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that is,
X ′′

X
(x) =

T ′′

c2T
(t).

As before, we know that the value of this expression is a constant, since it does not
depend on t, nor x. So, let

X ′′

X
(x) =

T ′′

c2T
(t) = −λ,

for some constant λ . Written in two ODEs, this is just{
X ′′ + λX = 0,
T ′′ + c2λT = 0.

1.2. Boundary Values.
First, the fixed ends gives us

u(0, t) = u(L, t) = 0,

which, under our assumption of the form of solution u(x, t) = X(x)T (t), is just

X(0)T (t) = X(L)T (t) = 0,

leading to

X(0) = X(L) = 0.

With the equation

X ′′ + λX = 0,

it is an easy exercise of two-point boundary problem to show that the only eigenvalues
are

λ =
(nπ
L

)2
,

and correspondingly,

Xn(x) = sin
nπ

L
x, Tn(t) = an cos

nπc

L
t+ bn sin

nπc

L
t, n = 1, 2, 3, ...

where an, bn are arbitrary constants.

1.3. Initial Values.
Now we consider the initial values. In particular, if we let un(x, t) = Xn(x)Tn(t), then

(un)t(x, 0) = 0

implies

T ′
n(0) = 0,

hence

bn = 0

and, up to multiplication by a constant, we can choose Tn(t) = cos nπc
L
t and thus

un(x, t) = sin
nπ

L
x cos

nπc

L
t.

Finally, we note that any superposition of the un’s would satisfy the initial-boundary
value problem (II), except for one piece of the initial value: u(x, 0) = f(x). Therefore,
we let

u(x, t) =
∞∑
n=1

dnun(x, t) =
∞∑
n=1

dn sin
nπ

L
x cos

nπc

L
t.
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Hence, by the initial value, we have

u(x, 0) = f(x) =
∞∑
n=1

dn sin
nπ

L
x.

The Fourier coefficients a sine series gives

dn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

This completes the solving (II).

2. Zero Initial Position

That is, consider the initial-boundary value problem (III). Before reading the solution
below, you may consider trying to solve it as an exercise, as it is quite similar to the
preceding case. In fact, nothing is different in the steps of separation of variables and
considering the boundary values. There we had

Xn(x) = sin
nπ

L
x, Tn(t) = an cos

nπc

L
t+ bn sin

nπc

L
t, n = 1, 2, 3, ...

where an, bn are arbitrary constants.

Now the initial value is different. The homogeneous condition is at the position, which
requires

u(x, 0) = 0.

Similarly as before, convince yourself that this leads to an = 0, and, un to multiplication
by a constant,

Tn(t) = sin
nπc

L
t.

Therefore,we let

un(x, t) = Xn(x)Tn(t) = sin
nπ

L
x sin

nπc

L
t.

And for each n = 1, 2, 3, ..., un(x, t) satisfies (III) except for the condition ut(x, 0) = g(x).

Finally, we superpose the un’s, and set

u(x, t) =
∞∑
n=1

knun(x, t) =
∞∑
n=1

kn sin
nπ

L
x sin

nπc

L
t.

By ut(x, 0) = g(x),
∞∑
n=1

nπc

L
kn sin

nπ

L
x = g(x).

Therefore, the coefficients kn are determined as

kn =
L

nπc

2

L

∫ L

0

g(x) sin
nπx

L
dx

=
2

nπc

∫ L

0

g(x) sin
nπx

L
dx.

This completes solving (III).


