LECTURE 27: ONE-DIMENSIONAL WAVE EQUATION:
DERIVATION, D’ALEMBERT’S FORMULA

1. STANDING AND TRAVELING WAVES

Speaking about waves, there are two basic types: standing waves and traveling waves.
The former, as time evolves, the configuration of the wave changes by an amplifying
factor. To be precise, we have

u(z,t) = X(x)T'(t),

in which u(x,t) denote the displacement of the particle at coordinate = of the string
at time t from its resting position. The latter, as time evolves, does not change the
configuration of the wave, but only travels in a certain direction at a certain velocity. In
symbols, this is just

u(z,t) = F(z — ct),
which means that wave, with configuration being the graph of F(z), is traveling to the
right at a velocity of ¢. Graphically, these two types of waves are illustrated below:

(A) Standing Wave (B) Traveling Wave

FiGURE 1. Two Types of Waves

For the wave equation that we are about to describe, it turns out that the standing
and traveling waves will give us two different views of its solution.

2. THE WAVE EQUATION ?uy,, = Uy

Given an elastic string of length L, we could imagine that the mass is concentrated
on certain particles along the string (z,, with x,.; — z, = Ax), and that each particle
is allowed to move vertically (Figure 2).

u

FI1GURE 2. Elastic String
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Furthermore, we assume that the tension along the string is a constant 7. Therefore,
the vertical component of the tension of the string connecting to z,, left and right, are
respectively

W(Tp, t) — u(Tp_1,t) W(Tpy1,t) — u(zy,t)
Ax Ax '
Hence, ignoring gravity, the force of the string at the particle z,, is
w(z, + Az, t) — 2u(z,, t) + u(z, — Az, t)
Ax

Fg:—T

, F.=1

F=F+F =7

By Newton’s second law, we have
F =ma = Azpuy(zp,t),

where p is the density of the string. This gives us

Tu(x, + Az, t) — 2u(x,, t) + u(x, — Az, t

o ) = T ( ) — 2u( : )+ u( )

P Ax
Taking the limit Az — 0 and using the Taylor expansion at * = =z, (or using the
L’Hopital’s rule twice), we obtain the equality

Uity ) = gy (0, t).
P
Indeed, there is nothing special about the position of x,, here, so let it be denoted by x
instead (0 < z < L). Also let us call 7/p as ¢®. The wave equation follows:
Uy (7, 1) = gy (T, 1), O0<z<L,t>0.

One may ask: what is ¢? In section 4, we will see that the solution of this equation is
the superposition of two traveling waves, one to the left, the other to the right, both
with velocity c.

3. TRAVELING WAVES AND D’ALEMBERT’S FORMULA

In this section, we look at the solutions of the wave equation
Cllge = Uy
from a different angle. First, let us consider the new variables

E=ux—ct, n = x + ct.

Exercise. Show that under the new variables, the wave equation above is equivalent to
U5n =0.

By the fundamental theorem of calculus (use it twice!), we know that any solution of
this equation must be of the form

u(€,n) = F (&) +Gn),

for some functions F,G. (And, in fact, for any differentiable functions F'(z) and G(x),
F(&) + G(n) solves the wave equation.)

Therefore, change the variables back to z,t in the solution, we have that any solution
of the wave equation must be of the form

u(z,t) = Fx — ct) + G(z + ct),
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which is simply the superposition of two traveling waves, one going to the left, the other
to the right, both of velocity c.

Furthermore, if we also know initial conditions, say,

u(z,0) = f(x), wuz,0)=g(x),
then the solution is given by the d’Alembert’s Formula:

u(e,t) = 3o — )+ Fw+ct)] + o / " g(r)dr.

2C T—ct



