
LECTURE 25: SEPARATION OF VARIABLES; INITIAL BOUNDARY
VALUE PROBLEM

The idea of separation of variables is simple: in order to solve a partial differential
equation in u(x, t), we ask, is it possible to find a solution of the form

u(x, t) = X(x)T (t),

where X,T are functions of x and t, respectively. In this lecture, we are going to see
how this idea is used in solving the equation of heat conduction in a rod.

Solution of Initial-Boundary Value Problem

The equation established in the previous section characterizes the physical laws. In
order to know exactly how the distribution of temperature in the rod evolves over time,
we need more information. One of the simplest is, constant zero temperature at both
ends of the rod together with an initial distribution of temperature inside the rod. This
belongs to what’s called an initial-boundary value problem. In symbols, α2uxx = ut, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ L.

We proceed to solve this initial-boundary value problem.

0.1. Separation of Variables. The first crucial step is called the separation of vari-
ables. Simply put, we are looking for solutions in the form

u(x, t) = X(x)T (t).

Plugging this in the equation, we obtain

α2X ′′(x)T (t) = X(x)T (t),

which is,
X ′′

X
(x) =

T ′

α2T
(t).

In this equality, the left hand side does not depend on t and the right hand side does
not depend on x, hence they simply do not depend on the variables x, t at all, i.e., equal
to some constant. So we let

X ′′

X
(x) =

T ′

α2T
(t) = −λ,

for some constant λ. Or, written as two separate equations:{
X ′′ + λX = 0,
T ′ + α2λT = 0.

We know how to find X(x) and T (t) since they are ODEs of the simplest type.
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0.2. Boundary Values. Now we consider the boundary values. To start with, we would
assume that the solution is not constantly zero, which is the case, as we could imagine,
when the initial condition u(x, 0) = f(x) is not constantly zero. With this assumption,
the boundary values tell us

u(0, t) = X(0)T (t) = 0, u(L, t) = X(L)T (t) = 0,

for all t > 0. Hence,
X(0) = X(L) = 0.

If we focus on X(x) at the moment, it is a nonzero solution of the two-point boundary
value problem {

X ′′ + λX = 0,
X(0) = X(L) = 0.

In looking for X, we are in fact looking for the eigenvalues and eigenfunctions of this
boundary value problem. Note that the general solution of the equation

X ′′ + λX = 0

are

X(x) =

 c1 cos
√
λx+ c2 sin

√
λx, λ > 0,

c1x+ c2, λ = 0,

c1e
√
−λx + c2e

−
√
−λx, λ < 0.

It is easy to see that nonzero solutions of the boundary value problem exist only when
λ > 0 and

√
λL = nπ (n = ±1,±2, ...), i.e.,

λ =
(nπ
L

)2
, n = ±1,±2, ...

Therefore, we have solutions (up to multiplication by a constant):

Xn(x) = sin
nπ

L
x,

and correspondingly,

Tn(t) = e−
α2n2π2

L2 t

In sum, for each n = 1, 2, 3, ..., we have obtained the solution

un(x, t) = X(x)T (t) = sin
nπx

L
e−

α2n2π2

L2 t,

of the heat equation with the zero boundary value.

0.3. Principle of Superposition. We haven’t considered the initial value u(x, 0) =
f(x) yet. For the boundary value problem{

α2uxx = ut, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0.

we have obtained a solution un(x, t) for each n = 1, 2, 3, ... And we do not know whether
any of these solutions satisfies the initial condition.

Now, noting that this boundary value problem is linear and the boundary values are
zero, we have that

∞∑
n=1

bnun(x, t)
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is a solution of the same boundary value problem for arbitrary constants c1, c2, ..., as
long as the infinite sum converges. This is called the principle of superposition. We ask:
Is it possible to find the constants bn so that

u(x, t) =
∞∑
n=1

bnun(x, t)

satisfies the initial condition? In other words, what are the bn’s such that

f(x) = u(x, 0) =
∞∑
n=1

bnXn(x)Tn(0) =
∞∑
n=1

bn sin
nπx

L
?

Aah! The bn’s, if exist, are just the Fourier coefficients when we expand f(x) as a sine
series! Therefore, we extend f(x) oddly to the interval [−L,L) and make it periodic
with period 2L. It follows that

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx,

and the series
∞∑
n=1

bn sin
nπx

L

converges to f(x) at all points of continuity of f(x). (If the initial value f(x) is contin-
uous, then the Fourier series simply converge to f(x) for 0 < x < L.)

To conclude, the solution of the initial-boundary value problem α2uxx = ut, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ L.

is

u(x, t) =
∞∑
n=1

bn sin
nπx

L
e−

α2n2π2

L2 t,

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

Example. Find the the distribution of temperature in a rod of length L = 50 with
initial value u(x, 0) = f(x) = 20. Temperature at both ends are set to be zero.

In this setting, L = 50 and

bn =
2

50

∫ 50

0

20 sin
nπx

50
dx =

40

nπ
(1− (−1)n).

Therefore,

u(x, t) =
∞∑
n=1

40

nπ
(1− (−1)n) sin

nπx

50
e−

α2n2π2

2500
t.


