## LECTURE 24: THE ONE-DIMENSIONAL HEAT EQUATION

$$
\text { The Heat Equation } \alpha^{2} u_{x x}=u_{t}
$$

Think of a rod with the following data:

- Length: L;
- Distribution of temperature along the rod: $u(x, t)$, depending on time;
- Area of cross section: A, a small number so that the temperature is viewed as a constant when the $x$ coordinate is fixed.
We also need three postulates:
- The rate of heat conduction crossing a unit area is proportional to $\frac{\partial u}{\partial \mathbf{n}}$, where $\mathbf{n}$ is the inward unit normal of the area. In our case, letting $\Delta H$ denote the heat transferred past (to the right) the cross section $x=x_{0}$, we have

$$
\Delta H=-\lambda A \frac{\partial u}{\partial x}\left(x_{0}, t\right) \Delta t
$$

for some constant $\lambda>0$.

- Fixing a short segment in the rod, with volume $\Delta V=A \cdot \Delta x$, the increase in temperature times volume in this segment is proportional to the increase in heat in this segment.
- No heat transfer through the "horizontal" boundary of the rod.


Figure 1. Heat Conduction in a Rod
Now, focus on a segment in the rod shown in the figure above. Within $\Delta t$ time, $\Delta V$ takes in heat from its left face by the amount $\Delta H_{1}$ and loses heat from its right face by the amount $\Delta H_{2}$. Hence, the heat in $\Delta V$ is increased by

$$
\Delta H_{1}-\Delta H_{2}=\lambda A \Delta t\left(\frac{\partial u}{\partial x}\left(x_{0}+\Delta x, t\right)-\frac{\partial u}{\partial x}\left(x_{0}, t\right)\right)
$$

By the second postulate, this increase in heat is proportional to $\Delta u\left(x_{0}, t\right) \cdot \Delta V$, say,

$$
\Delta H_{1}-\Delta H_{2}=\mu \Delta u\left(x_{0}, t\right) \cdot \Delta V=\mu \frac{\partial u}{\partial t}\left(x_{0}, t\right) \Delta t A \Delta x
$$

Date: 10/28/16.

Therefore, we have the relation:

$$
\lambda A \Delta t\left(\frac{\partial u}{\partial x}\left(x_{0}+\Delta x, t\right)-\frac{\partial u}{\partial x}\left(x_{0}, t\right)\right)=\mu \frac{\partial u}{\partial t}\left(x_{0}, t\right) A \Delta t \Delta x
$$

i.e.,

$$
\frac{\lambda}{\mu} \frac{1}{\Delta x}\left(\frac{\partial u}{\partial x}\left(x_{0}+\Delta x, t\right)-\frac{\partial u}{\partial x}\left(x_{0}, t\right)\right)=\frac{\partial u}{\partial t}\left(x_{0}, t\right) .
$$

Passing to the limit $\Delta x \rightarrow 0$ gives

$$
\frac{\lambda}{\mu} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{0}, t\right)=\frac{\partial u}{\partial t}\left(x_{0}, t\right) .
$$

Letting $\frac{\lambda}{\mu}=\alpha^{2}$, and noting that the equality above holds for all $0<x_{0}<L$, we have thus obtained

$$
\alpha^{2} u_{x x}(x, t)=u_{t}(x, t), \quad(0<x<L, t>0),
$$

the equation of heat conduction in a rod.

