
LECTURE 22: FOURIER SERIES

An intuitive model of the Fourier series is perhaps the sound that we hear: a super-
position of vibrations of various amplitudes and frequencies, each represented by either
a sine or cosine wave. The formal definition of the Fourier series is the following:
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where an(n = 0, 1, 2, ...) and bn(n = 1, 2, 3, ...) are constants. Certainly, when we en-
counter an infinite series like this, a natural question to ask is its convergence. We will
discuss this in the next lecture. For now, we are going to study the Fourier series formally
and see what is special about it.

1. Periodic Functions

Looking at the terms in the Fourier series defined above, we observe that all the cosine
and sine functions share the period 2L.

As a reminder, a function f(x) is said to be periodic with period T > 0 if f(x+ T ) =
f(x) for all x. By this definition, it is easy to see that the period of f(x), if exists, is not
unique. In fact, if T > 0 is a period, then kT (k = 1, 2, 3, ...) are all periods of f(x). The
fundamental period of a periodic function f(x) is defined as the smallest period of f(x).

Useful facts about the periodic functions include: If f(x) and g(x) have the same
period T , then af(x) + bg(x) and f(x)g(x), where a, b are constants, all have the period
T .

2. L2-inner product and Euler-Fourier Formula

Let f(x), g(x) be piecewise continuous functions defined on the interval [α, β], then
the L2-inner product of f(x), g(x) over the interval [α, β] is defined as

〈f, g〉L2[α,β] =

∫ β

α

f(x)g(x)dx.

When there is no confusion of the notation, we could simply write 〈f, g〉L2[α,β] as 〈f, g〉.
Note that the L2-inner product defined as this satisfies all the axioms of an inner product:

• Symmetry: 〈f, g〉 = 〈g, f〉.
• Bilinearity: 〈af + bg, h〉 = a〈f, h〉+ b〈g, h〉, a, b constants.
• Positive definity: 〈f, f〉 ≥ 0, and 〈f, f〉 = 0 if and only if f = 0 almost every-

where.

Geometrically, whenever we have an inner product, there are the notions of angle and
length. In particular, in the case of L2-inner product, f, g are said to be orthogonal if

〈f, g〉 = 0,

and the length of f is defined as

‖f‖L2 = 〈f, f〉
1
2 .

Date: 10/24/16.
1



2 LECTURE 22: FOURIER SERIES

Returning to Fourier series, note that the Fourier series is an infinite constant coefficient
linear combination of the list of functions

{1, cos
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L
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L
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L
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, ...}

Considering the L2-inner products of these functions over the interval [−L,L], we have
the following two claims:

Claim 1. The functions in the list above are mutually orthogonal.

Claim 2. The square of the lengths of all the functions in the list above are L, ex-
cept that of the function 1, which is ‖1‖2 = 2L.

Before proving these claims, we show how they may be useful. Suppose that the Fourier
series
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converges to a function f(x) on the interval [−L,L]. By the claims we must have
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Therefore, we have obtained the Euler-Fourier formula for calculating the coefficients in
a Fourier series:
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L
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Remark. In the argument which leads to the Euler-Fourier formula, we have assumed
that the Fourier series converges to f(x). Now, with the formulas, we could ask for the
converse: given f(x) defined on [−L,L] with period 2L, we could find the coefficients
an, bm by the formula, hence a Fourier series associated to f(x). Right now, we do not
know whether this Fourier series converges to f(x) or not, so we use the symbol ∼ to
denote their relation:
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where all the coefficients in the series are calculated by the Euler-Fourier formulas.

Example. Find the Fourier series for the function

f(x) =

{
−x, −2 ≤ x < 0,
x, 0 ≤ x < 2.

f(x+ 4) = f(x).

Evidently, this function has period T = 4, hence L = 2. By the Euler-Fourier formulas,
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The Fourier series follows.

Note: We used the relation between even and odd functions and integrals to simplify the
evaluation of the integrals above. More details will be discussed in the next lecture.

3. Proof of the Claims

Proof of Claim 1. To check the orthogonality of these functions, it suffices to check that
the five types of expressions:
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are all zero. Noting that each of these expressions is essentially an integral over the
interval [−L,L], by the oddness of the product of the two functions being taken inner
product, we know immediately that the second and the fifth types of expressions are
always zero.

To check the first type, we have

〈1, cos
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L
〉 =
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Next, we check that the third type of expressions are equal to zero and leave the fourth
one, which is completely analogous, as an exercise:
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This completes the proof.

Proof of Claim 2. To check the square-of-length statement, we need to calculate
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Now,

‖1‖2 = 〈1, 1〉 =

∫ L

−L
1dx = 2L.∥∥∥ cos

mπx

L

∥∥∥2 = 〈cos
mπx

L
, cos

mπx

L
〉 =

∫ L

−L
cos2

mπx

L
dx

=
1

2

∫ L

−L

(
cos

2mπx

L
+ 1
)
dx

=
L

4mπ
sin

2mπx

L

∣∣∣L
−L

+ L

= L.∥∥∥ sin
mπx

L

∥∥∥2 = 〈sin mπx
L

, sin
mπx

L
〉 =

∫ L

−L
sin2 mπx

L
dx

=
1

2

∫ L

−L

(
1− cos

2mπx

L

)
dx

= L− L

4mπ
sin

2mπx

L

∣∣∣L
−L

= L.

This completes the proof.


