
LECTURE 20: TWO-POINT BOUNDARY VALUE PROBLEMS

Imagine that some player is juggling (vertically) a ball of unit mass. We are familiar
that the motion of the ball is characterized by the Newton’s law, a second order ordinary
differential equation:

h′′ = −g.
There are two question one could ask: one, what is the trajectory of the ball after it is
launched at position h0 with the velocity v0; two, is it possible to receive the ball back
two seconds after it is launched. It is easy to see that the first question corresponds to
solving an initial value problem with initial conditions h(0) = h0, h

′(0) = v0. For the
second question, the conditions are h(0) = h(2) = 0. Since the values are fixed at the
boundary of a time interval, we call it a boundary value problem. It is worth noting that
while the trajectory of the ball always exists, given the initial position and velocity, it is
not clear whether it is possible to obtain a solution for a boundary value problem. This
is what we will discuss next and we are going to focus on second order equations.

Definition. The second order linear ordinary boundary value problem

y′′ + p(x)y′ + q(x)y = g(x), y(α) = b0, y(β) = b1, α 6= β

is said to be homogeneous if g(x) = 0 and b0 = b1 = 0.

For second order linear ODEs, in general, solving a boundary value problem is anal-
ogous to solving an initial value problem. The procedure is finding the general solution
of the equation first, with certain coefficients to be determined. Then we determine
those coefficients using the boundary values. For example, consider the boundary value
problem

y′′ + 3y = 0, y(0) = 1, y(π) = 0.

The general solution of the equation is

y(t) = c1 cos
√

3t+ c2 sin
√

3t.

Using the boundary values, we obtain

c1 = 1,

c1 cos
√

3π + c2 sin
√

3π = 0.

Thus,

c1 = 1,

c2 = − cot
√

3π.

Here, we obtained a unique solution of the boundary value problem.

Now, consider the boundary value problem

y′′ + y = 0, y(0) = 1, y(π) = a,
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where a is some constant. Again, the general solution of the equation can be easily found
to be

y(t) = c1 cos t+ c2 sin t.

Taking in to account the boundary values,

c1 = 1, −c1 = a.

Two possibilities:

• a = −1. In this case, c1 = 1 and c2 can be any value. We have infinitely many
solutions.
• a 6= −1. In this case, there are no solutions.

From the discussion above, we see that a boundary value problem may have unique,
infinitely many or no solutions. Now we are going to explore a little more of this for
equations of the form

y′′ + λy = 0, y(0) = 0, y(π) = 0.

Note that the zero solution is always a solution of this boundary value problem. In
light of linear algebra, we call the values of λ such that nonzero solutions exist the
eigenvalues of the boundary value problem. The corresponding nonzero solutions are
called eigenfunctions. So, what are the eigenvalues and eigenfunctions of this boundary
value problem? We discuss this in three cases:

• λ = 0. The equation becomes y′′ = 0 and the general solutions are linear func-
tions, i.e., y(t) = c1 + c2t. Taking into account the boundary values, we have

c1 = 0, c1 + c2π = 0.

Therefore, c1 = c2 = 0. The only solution is y(t) = 0. Hence, λ = 0 is not an
eigenvalue.
• λ < 0. Let λ = −µ2, where µ > 0 is a real number. The equation becomes
y′′ − µ2y = 0 and the general solutions are

y(t) = c1e
µt + c2e

−µt.

By the boundary values, we have

c1 + c2 = 0,

c1e
µπ + c2e

−µπ = 0.

One could write this system of linear equations in the matrix form Ac = 0 and
see that, since µ > 0, detA 6= 0. Therefore, c1 = c2 = 0 and there are no negative
eigenvalues of the given boundary value problem.
• λ > 0. Let λ = µ2 where µ > 0. The equation becomes y′′ + µ2y = 0 and the

general solutions are

y(t) = c1 cosµt+ c2 sinµt.

Plugging in the boundary values, we have

c1 = 0,

c2 sinµπ = 0.

Clearly, λ = µ2 is not an eigenvalue unless µ = k is an integer, i.e., λ =
1, 4, 9, 16.... If µ is an integer, then there are infinitely solutions, all in the form
c sinµt.


