## LECTURE 2: SEPARABLE EQUATIONS, HOMOGENEOUS EQUATIONS

## 1. Separable Equations

A first order ODE with independent variable $x$

$$
\frac{d y}{d x}=f(x, y)
$$

is said to be separable if the function $f(x, y)$ can be written as

$$
f(x, y)=g(x) h(y) .
$$

A separable equation can be solved by separating the variables and integrating both sides of the equation. The solution is usually an implicit formula for $y$, i.e., a relation between $x, y$ given by some $F(x, y)=0$ rather than the explicit solution $y=F(x)$. Proceeding to examples:

Example 1. The equation

$$
x+y \frac{d y}{d x}=0
$$

is separable, since the variable and the unknown function can be obviously separated to give

$$
x d x=-y d y .
$$

Integrating both sides, one obtains

$$
\frac{1}{2} x^{2}=-\frac{1}{2} y^{2}+C
$$

or, equivalently (after renaming the constant $C$ ),

$$
x^{2}+y^{2}=C .
$$

For $C>0$, this is just the (algebraic) equation for circles centered at the origin. The implicitness is clear. For example, the solution passing through $(1,0)$ is the unit circle in $\mathbb{R}^{2}$ and nearby $(1,0), y$ is not expressible as a function of $x$. (However, it is possible to regard $x$ as a function of $y$ near $(1,0)$.)

Example 2. Similarly, the equation

$$
\frac{d y}{d x}-\frac{x^{2}+1}{\sin y+1}=0
$$

is separable. Integrating both sides of

$$
(\sin y+1) d y=\left(x^{2}+1\right) d x
$$

gives

$$
-\cos y+y=\frac{1}{3} x^{3}+x+C
$$

Date: 08/31/16.

Therefore, the (implicit) solutions are

$$
\frac{1}{3} x^{3}+x+\cos y-y=C
$$

Example 3. The population model with the reproduction rate $r$ and environmental capacity $C$ both set to 1 is written:

$$
\frac{d p}{d t}=p(1-p)
$$

This is separable equation. Separating the variables gives

$$
\frac{1}{p(1-p)} d p=d t
$$

The left hand side can be written in a form whose integral is more recognizable:

$$
\frac{1}{p(1-p)} d p=\frac{1}{p} d p-\frac{1}{p-1} d p
$$

Integration on both sides of $\frac{1}{p(1-p)} d p=d t$ then gives

$$
\ln |p|-\ln |p-1|=t+C
$$

Equivalently,

$$
\frac{p}{|1-p|}=C e^{t}, \quad(C>0)
$$

Of course, during the integration, one assumes $p, p-1 \neq 0$, thus forgetting the two obvious solutions $p(t)=0$ and $p(t)=1$, which should be considered in the final answer:

$$
p(t)=\left\{\begin{array}{cl}
\frac{C e^{t}}{1+C e t}, & p\left(t_{0}\right)<1 \\
1, & p\left(t_{0}\right)=1 \\
\frac{C e^{t}}{C e e^{t-1}}, & p\left(t_{0}\right)>1 \\
0, & p\left(t_{0}\right)=0
\end{array}\right.
$$

where $C$ is determined by the initial value $p\left(t_{0}\right)$.

## 2. Homogeneous Equations

Definition. A function $f(x, y)$ is said to be homogeneous of degree $n$ if for all suitable $x, y$ and $t$ ("suitable" in the sense that the arguments of $f$ remains in the domain of definition),

$$
f(t x, t y)=t^{n} f(x, y)
$$

By the definition,

$$
f(x, y)=x y+x^{2}, \quad g(x, y)=\frac{x y+y^{2}}{y^{3}-x^{2} y}, \quad h(x, y)=\frac{x+y}{x-y}
$$

are homogeneous functions of degree $2,-1,0$, respectively;

$$
p(x, y)=x y+y^{3} \quad q(x, y)=e^{x} y
$$

are not homogeneous. (Note: You may remember the "homogeneous linear ODEs". Unfortunately, the same term "homogeneous" is used for a completely different meaning here.)

Definition. The differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

is said to be homogeneous if $f(x, y)$ is a homogeneous function of degree 0 .
Proposition. Any homogeneous first-order ODE becomes separable after the substitution

$$
z=\frac{y}{x} .
$$

Proof. Differentiating

$$
y=z x
$$

with respect to $x$ gives

$$
\frac{d y}{d x}=z+x \frac{d z}{d x}
$$

On the other hand, since $f(x, y)$ is homogeneous of degree zero,

$$
f(x, y)=f\left(x^{-1} x, x^{-1} y\right)=f(1, z) .
$$

The original differential equation now translates to an equation in $z$ :

$$
z+x \frac{d z}{d x}=f(1, z)
$$

This equation is clearly separable, and is equivalent to

$$
\frac{d z}{f(1, z)-z}=\frac{d x}{x}
$$

Example. The equation

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}
$$

is by definition homogeneous. Hence, after the substitution $z=y / x$, translates to

$$
\frac{d z}{z^{-1}}=\frac{d x}{x}
$$

Integrating on both sides gives the implicit solution

$$
\frac{1}{2} z^{2}=\ln |x|+C .
$$

Translating back to $y$ :

$$
\frac{1}{2} y^{2}=x^{2} \ln |x|+C x^{2}
$$

