
LECTURE 12: SERIES SOLUTIONS NEAR AN ORDINARY POINT: I
(CONT.)

1. Initial Value at x0 6= 0; Example

Last time we applied the series method to a couple of second order ODEs for which
the initial value is set at x0 = 0, hence the power series solution is at x = 0. Of course,
one may ask, what if the initial value is given at some x0 6= 0? The answer is simple,
use the “shifting trick” to let t = x− x0. By the chain rule, we have

dy

dx
=

dy

dt

dt

dx
=

dy

dt
, etc.

Hence, the initial value problem can be translated into one of y(t) with initial value being
set at t0 = 0. This shall be clear through an example.

Example:(Initial Value at x = 1) Consider the initial value problem

y′′ − xy′ + x2y = 0, y(1) = 1, y′(1) = 1.

Note that the initial value is set at x0 = 1, hence we make the substitution t = x − 1.
Then the initial value problem is turned into one in y(t):

y′′ − (t + 1)y′ + (t + 1)2y = 0, y(0) = 1, y′(0) = 1.

(Note that, now, all the derivatives are taken with respect to t.) Let’s assume that a
power series solution take the form

y(t) =
∞∑
n=0

ant
n,

and note that, by the initial values, we have

a0 = 1, a1 = 1.

Thus,

y′ =
∞∑
n=1

nant
n−1,

y′′ =
∞∑
n=2

n(n− 1)ant
n−2.

Plugging y(t) in the equation, we obtain
∞∑
n=2

n(n− 1)ant
n−2 − (t + 1)

∞∑
n=1

nant
n−1 + (t + 1)2

∞∑
n=0

ant
n = 0.

Now you may test your proficiency in shifting the summation indices by turning the left
hand side into the form:

{ a few isolated terms with smaller indices} +
∑∞

n=k[coefficient formula]·xn.
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In fact, the first term on the LHS of the equality above equals to:
∞∑
n=2

n(n− 1)ant
n−2 =

∞∑
m=0

(m + 2)(m + 1)am+2t
m;

the second term:

−(t + 1)
∞∑
n=1

nant
n−1 = −

∞∑
m=1

mamt
m −

∞∑
m=0

(m + 1)am+1t
m;

and the third term:

(t + 1)2
∞∑
n=0

ant
n = (t2 + 2t + 1)

∞∑
n=0

ant
n

=
∞∑

m=2

am−2t
m +

∞∑
m=1

2am−1t
m +

∞∑
m=0

amt
m.

Putting together, we have(
∞∑

m=0

(m + 2)(m + 1)am+2t
m

)
+

(
−
∞∑

m=1

mamt
m −

∞∑
m=0

(m + 1)am+1t
m

)

+

(
∞∑

m=2

am−2t
m +

∞∑
m=1

2am−1t
m +

∞∑
m=0

amt
m

)
= 0,

which is

(2a2 − a1 + a0) + (6a3 − 2a2 + 2a0)t

+
∞∑

m=2

[(m + 2)(m + 1)am+2 − (m + 1)am+1 − (m− 1)am + 2am−1 + am−2]t
m.

Therefore, the recurrence relations for the coefficients are

a0 = 1,

a1 = 1,

2a2 − a1 + a0 = 0,

6a3 − 2a2 + 2a0 = 0,

(m + 2)(m + 1)am+2 − (m + 1)am+1 − (m− 1)am + 2am−1 + am−2 = 0, m ≥ 2.

Of course, to obtain a solution of the original equation, substitute back using

t = x− 1.

2. y′′ + p(x)y′ + q(x)y = 0, p(x), q(x) not polynomials.

The examples which we have considered until now are those with p(x), q(x) being poly-
nomials. As you can imagine, these are the cases in which one could certainly obtain
a recurrence relation when applying the method of undetermined coefficients (for series
solutions). However, there are examples in which a general recurrence formula for the
coefficients is not as easy to be found, but one still could find the first any number of
coefficients in a series solution. See the following example.
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Example: Consider the equation

y′′ + cosxy′ + exy = 0.

Assuming that solution near x = 0 can be expanded as a power series:

y(x) = a0 + a1x + a2x
2 + ... + anx

n + ...

then,

y′(x) = (a0 + a1x + a2x
2 + ...)′ = a1 + 2a2x + 3a3x

2 + ... =
∞∑
k=1

kakx
k−1,

y′′(x) = (a1 + 2a2x + 3a3x
2 + ...)′ = 2a2 + 3 · 2a3x + ... =

∞∑
k=2

k(k − 1)akx
k−2.

Also note that

cosx = 1− 1

2!
x2 +

1

4!
x4 − ...

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + ...

Plugging these expansions in the equation, and rearranging the terms according to the
powers of x, we obtain

0 = (2a2 + 6a3x + 12a4x
2 + 20a5x

3 + ...)

+ (1− 1

2!
x2 +

1

4!
x4 + ...)(a1 + 2a2x + 3a3x

2 + 4a4x
3 + 5a5x

4 + ...)

+ (1 + x +
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ...)(a0 + a1x + a2x

2 + a3x
3 + a4x

4...)

= (2a2 + a1 + a0) + (6a3 + 2a2 + a1 + a0)x + (12a4 + 1
2
a1 + 3a3 + a2 + 1

2
a0)x

2

+ (20a5 + 4a4 + a3 + 1
2
a1 + 1

6
a0)x

3 + ...

Therefore,

a2 = −a1 + a0
2

,

a3 = −2a2 + a1 + a0
6

= 0,

a4 = −a1 + 2a2 + a0
24

= 0,

a5 = −3a1 + a0
120

,

......

and

y(x) = a0(1−
1

2
x2 − 1

120
x5 + ...) + a1(x−

1

2
x2 − 1

40
x5 + ...).

Here, we’ve specified the terms up to order five in a general solution of the given equation.


