LECTURE 12: SERIES SOLUTIONS NEAR AN ORDINARY POINT: I (CONT.)

1. Initial Value at $x_{0} \neq 0$; Example

Last time we applied the series method to a couple of second order ODEs for which the initial value is set at $x_{0}=0$, hence the power series solution is at $x=0$. Of course, one may ask, what if the initial value is given at some $x_{0} \neq 0$? The answer is simple, use the "shifting trick" to let $t=x-x_{0}$. By the chain rule, we have

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{d y}{d t}, \quad \text { etc. }
$$

Hence, the initial value problem can be translated into one of $y(t)$ with initial value being set at $t_{0}=0$. This shall be clear through an example.

Example:(Initial Value at $x=1$) Consider the initial value problem

$$
y^{\prime \prime}-x y^{\prime}+x^{2} y=0, \quad y(1)=1, \quad y^{\prime}(1)=1 .
$$

Note that the initial value is set at $x_{0}=1$, hence we make the substitution $t=x-1$. Then the initial value problem is turned into one in $y(t)$:

$$
y^{\prime \prime}-(t+1) y^{\prime}+(t+1)^{2} y=0, \quad y(0)=1, \quad y^{\prime}(0)=1 .
$$

(Note that, now, all the derivatives are taken with respect to t.) Let's assume that a power series solution take the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

and note that, by the initial values, we have

$$
a_{0}=1, \quad a_{1}=1 .
$$

Thus,

$$
\begin{gathered}
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} t^{n-1}, \\
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} .
\end{gathered}
$$

Plugging $y(t)$ in the equation, we obtain

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}-(t+1) \sum_{n=1}^{\infty} n a_{n} t^{n-1}+(t+1)^{2} \sum_{n=0}^{\infty} a_{n} t^{n}=0 .
$$

Now you may test your proficiency in shifting the summation indices by turning the left hand side into the form:
$\{$ a few isolated terms with smaller indices $\}+\sum_{n=k}^{\infty}[$ coefficient formula $] \cdot x^{n}$.
Date: 09/23/15.

In fact, the first term on the LHS of the equality above equals to:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} t^{m}
$$

the second term:

$$
-(t+1) \sum_{n=1}^{\infty} n a_{n} t^{n-1}=-\sum_{m=1}^{\infty} m a_{m} t^{m}-\sum_{m=0}^{\infty}(m+1) a_{m+1} t^{m} ;
$$

and the third term:

$$
\begin{aligned}
(t+1)^{2} \sum_{n=0}^{\infty} a_{n} t^{n} & =\left(t^{2}+2 t+1\right) \sum_{n=0}^{\infty} a_{n} t^{n} \\
& =\sum_{m=2}^{\infty} a_{m-2} t^{m}+\sum_{m=1}^{\infty} 2 a_{m-1} t^{m}+\sum_{m=0}^{\infty} a_{m} t^{m}
\end{aligned}
$$

Putting together, we have

$$
\begin{aligned}
\left(\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} t^{m}\right)+ & \left(-\sum_{m=1}^{\infty} m a_{m} t^{m}-\sum_{m=0}^{\infty}(m+1) a_{m+1} t^{m}\right) \\
& +\left(\sum_{m=2}^{\infty} a_{m-2} t^{m}+\sum_{m=1}^{\infty} 2 a_{m-1} t^{m}+\sum_{m=0}^{\infty} a_{m} t^{m}\right)=0
\end{aligned}
$$

which is

$$
\begin{aligned}
& \left(2 a_{2}-a_{1}+a_{0}\right)+\left(6 a_{3}-2 a_{2}+2 a_{0}\right) t \\
& \quad+\sum_{m=2}^{\infty}\left[(m+2)(m+1) a_{m+2}-(m+1) a_{m+1}-(m-1) a_{m}+2 a_{m-1}+a_{m-2}\right] t^{m} .
\end{aligned}
$$

Therefore, the recurrence relations for the coefficients are

$$
\begin{aligned}
a_{0} & =1, \\
a_{1} & =1, \\
2 a_{2}-a_{1}+a_{0} & =0, \\
6 a_{3}-2 a_{2}+2 a_{0} & =0, \\
(m+2)(m+1) a_{m+2}-(m+1) a_{m+1}-(m-1) a_{m}+2 a_{m-1}+a_{m-2} & =0, \quad m \geq 2 .
\end{aligned}
$$

Of course, to obtain a solution of the original equation, substitute back using

$$
t=x-1
$$

2. $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, p(x), q(x)$ NOT POLYNOMIALS.

The examples which we have considered until now are those with $p(x), q(x)$ being polynomials. As you can imagine, these are the cases in which one could certainly obtain a recurrence relation when applying the method of undetermined coefficients (for series solutions). However, there are examples in which a general recurrence formula for the coefficients is not as easy to be found, but one still could find the first any number of coefficients in a series solution. See the following example.

Example: Consider the equation

$$
y^{\prime \prime}+\cos x y^{\prime}+e^{x} y=0 .
$$

Assuming that solution near $x=0$ can be expanded as a power series:

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots
$$

then,

$$
\begin{aligned}
& y^{\prime}(x)=\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots=\sum_{k=1}^{\infty} k a_{k} x^{k-1}, \\
& y^{\prime \prime}(x)=\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots\right)^{\prime}=2 a_{2}+3 \cdot 2 a_{3} x+\ldots=\sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2} .
\end{aligned}
$$

Also note that

$$
\begin{aligned}
\cos x & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots \\
e^{x} & =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots
\end{aligned}
$$

Plugging these expansions in the equation, and rearranging the terms according to the powers of x, we obtain

$$
\begin{aligned}
0= & \left(2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\ldots\right) \\
& \quad+\left(1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\ldots\right)\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+5 a_{5} x^{4}+\ldots\right) \\
& +\left(1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots\right)\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \ldots\right) \\
=(& \left(2 a_{2}+a_{1}+a_{0}\right)+\left(6 a_{3}+2 a_{2}+a_{1}+a_{0}\right) x+\left(12 a_{4}+\frac{1}{2} a_{1}+3 a_{3}+a_{2}+\frac{1}{2} a_{0}\right) x^{2} \\
& \quad+\left(20 a_{5}+4 a_{4}+a_{3}+\frac{1}{2} a_{1}+\frac{1}{6} a_{0}\right) x^{3}+\ldots
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& a_{2}=-\frac{a_{1}+a_{0}}{2}, \\
& a_{3}=-\frac{2 a_{2}+a_{1}+a_{0}}{6}=0, \\
& a_{4}=-\frac{a_{1}+2 a_{2}+a_{0}}{24}=0, \\
& a_{5}=-\frac{3 a_{1}+a_{0}}{120},
\end{aligned}
$$

......
and

$$
y(x)=a_{0}\left(1-\frac{1}{2} x^{2}-\frac{1}{120} x^{5}+\ldots\right)+a_{1}\left(x-\frac{1}{2} x^{2}-\frac{1}{40} x^{5}+\ldots\right) .
$$

Here, we've specified the terms up to order five in a general solution of the given equation.

