
LECTURE 10: REVIEW OF POWER SERIES

By definition, a power series centered at x0 is a series of the form

a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

where a0, a1, ... and x0 are constants. For convenience, we shall mostly be concerned
with the case x0 = 0, otherwise, simply make the substitution t = x − x0 and look at
the corresponding power series in t.

1. Motivation

The familiar second order equation

y′′ + y = 0

has solutions being a constant coefficient linear combination of cosx and sin x. Assuming
that one never knows these solutions, but takes another approach instead by finding
solutions which can be written as a (formal)1 power series

y(x) = a0 + a1x+ a2x
2 + ...anx

n + ...

Assuming that the derivative can be calculated term-by-term in the series, we have

y′′(x) = 2a2 + 6a3x+ 12a4x
2 + ...+ an+2(n+ 2)(n+ 1)xn + ...

Hence, formally,

y+ y′′ = (a0 + 2a2) + (a1 + 6a3)x+ (a2 + 12a4)x
2 + ...+ (an + (n+ 1)(n+ 2)an+2)x

n + ...

and y satisfies the original equation if and only if all the coefficients in the expansion of
y + y′′ equal to zero, that is,

a2 = − 1

2!
a0, a3 = − 1

3!
a1,

a4 = − 1

3 · 4
a2 =

1

4!
a0, a5 = − 1

5 · 4
a3 =

1

5!
a1,

a6 = − 1

6 · 5
a4 = − 1

6!
a0, a7 = − 1

7 · 6
a5 = − 1

7!
a1,

· · · · · ·
Thus,

y(x) = a0

(
1− 1

2!
x2 +

1

4!
x4 − ...

)
+ a1

(
x− 1

3!
x3 +

1

5!
x5 + ...

)
.

If you realize the Taylor expansions at the origin of cos x, sinx, then the previous equality
is evidently

y = a0 cosx+ a1 sinx.

This inspires looking for solutions taking the form of a power series as above. Of course,
in order for such a solution to make sense, one needs some knowledge about the validity
of such an infinite series (i.e., convergence/differentiability, etc.), which we shall develop
below.

Date: 09/19/16.
1By “formal” I mean that convergence is not yet concerned.
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The main questions are:
(i) What does “convergence of a power series” mean?
(ii) How to find the domain on which a power series converges?

2. Power Series; Radius of Convergence

A power series

a0 + a1x+ a2x
2 + ...

is said to converge at x = x1 if the limit

lim
n→∞

(
a0 + a1x1

2 + a2x1
2 + ...+ anx1

n + ...
)

exists. It is said to absolutely converge at x1 if the series

|a0|+ |a1||x1|2 + |a2||x1|2 + ...

converges. It is a basic result that, referring to a fixed power series and a fixed x1,
absolute convergence implies convergence.

For example, since the limiting behavior of the number series

(i) 1 +
1

2
+

1

3
+ ...+

1

n
+ ...

(ii) 1− 1

2
+

1

3
− 1

4
+ (−1)n+1 1

n
+ ...

(iii) 1 +
1

22
+

1

32
+

1

42
+ ...

are respectively (i) divergent; (ii) convergent; (iii) convergent, the power series

1 +
1

2
x+

1

3
x2 + ...+

1

n
xn−1 + ...

converges at x = −1 but diverges at x = 1, hence is not absolutely convergent at x = −1.
The power series

1 +
1

22
x+

1

32
x2 +

1

42
x3 + ...

is absolutely convergent at x = 1.
One useful test of convergence is the ratio test: Let

a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...,

be a power series. Fixing x and assume that following limit exists:

lim
n→∞

∣∣∣an+1(x− x0)n+1

an(x− x0)n
∣∣∣ = |x− x0| lim

n→∞

∣∣∣an+1

an

∣∣∣ = k.

Then we have:

• If k < 1 then the power series

a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

converges absolutely at x.
• If k > 1, then the power series

a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

diverges at x.
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• If k = 1,
then it is indefinite in general whether

a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

converges or diverges at x.

The ratio test gives us a sense of the domain on which a power series converges: If,
for a typical power series as above, the

As we can see, the limit of ratios limn→∞
∣∣an+1

an

∣∣ plays a crucial role here in determining:
for which values of x the power series is convergent or divergent. With this in mind, let
us define the radius of convergence of the power series a0 + a1(x − x0) + a2(x − x0)2 +
a3(x− x0)3 + ... to be

ρ =

{
∞, limn→∞

∣∣an+1

an

∣∣ = 0,(
limn→∞

∣∣an+1

an

∣∣)−1, limn→∞
∣∣an+1

an

∣∣ > 0.

Therefore, corresponding back to the ratio test, we have that the power series is conver-
gent on (x0 − ρ, x0 + ρ), divergent on (−∞, x0 − ρ) ∪ (x0 + ρ,∞), and is indefinite (or
dependent on the specific expression of the power series) at the end-points x0 − ρ and
x0 + ρ when ρ <∞. Now, we can argue that the set of x-values at which a power series
is convergent forms an interval (open, closed or half-closed). Do you see why?

Examples.
(1) The series

1 + 1!x+ 2!x2 + 3!x3 + ...+ n!xn + ...

converges only at x = 0 and diverges everywhere else, because

lim
n→∞

∣∣∣(n+ 1)!

n!

∣∣∣ = lim
n→∞

(n+ 1) =∞.

Thus, the radius of convergence ρ equals to zero.

(2) The series

1 + x+
1

2
x2 +

1

3
x3 +

1

4
x4 + ...+

1

n
xn + ...

is convergent on the half-closed interval [−1, 1) because on the one hand, its radius of
convergence is

ρ =
(

lim
n→∞

∣∣∣1/(n+ 1)

1/n

∣∣∣)−1 = 1,

on the other hand, it is convergent at x = −1 but divergent at x = 1.

(3) The series

1 + x+
1

2!
x2 +

1

3!
x3 + ...+

1

n!
xn + ...

is convergent on the entire (−∞,∞) because its radius of convergence is ∞ since

lim
n→∞

∣∣∣1/(n+ 1)!

1/n!

∣∣∣ = 0.
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*(4) The series

1 + x2 +
1

2
x4 +

1

3
x6 + ...+

1

n
x2n + ...

has the interval of convergence (−1, 1), but it seems that the ratio test does not directly
tell us this. In fact, if we calculate

an+1

an
,

it equals zero when n is even and ∞ when n is odd, hence the limit limn→∞
∣∣an+1

an

∣∣ does

not exist (not even equal to ∞). However, there is a way to use the ratio test indirectly.
Take z = x2, of course, z ≥ 0, the power series then becomes

1 + z +
1

2
z2 + ...

which has the convergence interval (−1, 1). Note that z ≥ 0. Therefore, in x, the interval
of convergence consists those x satisfying z = x2 ∈ [0, 1), i.e., x ∈ (−1, 1). Side Note: If
your are familiar with the Taylor expansions of sinx and cosx, and are trying to use the
ratio test determine their radii of convergence, you’d probably think of the trick used in
this exercise.

3. Taylor Series

Theorem. The power series

a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

defines a continuous function on the open interval (x0 − ρ, x0 + ρ), where ρ is its radius
of convergence.

The following theorem tells us what the derivative of a power series is in its interval
of convergence.
Theorem. Under the same conditions as in the preceding theorem, and let

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ..., x0 − ρ < x < x0 + ρ.

Then

f ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)2 + ..., x0 − ρ < x < x0 + ρ.

We are not going to prove these theorems in this course, but instead ask a natural
question that follows the theorems: if f(x) is such a continuous function, how do the
coefficients in the power series relate to f(x)? Of course, you may be thinking of the
Taylor series. So let us derive the formulas for all the coefficients ai.

First, let us assume that on (x0 − ρ, x0 + ρ),

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

Take x = x0 and immediately we have

f(x0) = a0.
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Take x = x0 in the expression of f ′(x), and we have

f ′(x0) = a1.

Now apply the second theorem above to the function f ′(x), we get

f ′′(x) = 2!a2 + 3 · 2a3(x− x0) + ..., x0 − ρ < x < x0 + ρ.

Again, evaluating this expression at x0 gives

f ′′(x0) = 2!a2.

Now you may have seen the pattern, the expression for f (n)(x) is

f (n)(x) = n!an + (n+ 1)n...2an+1(x− x0) + ..., x0 − ρ < x < x0 + ρ.

Hence, for the same reason as before,

f (n)(x0) = n!an.

To summarize, if the power series

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + ...

is convergent on (x0 − ρ, x0 + ρ), then

an =
f (n)(x0)

n!
.

And the power series

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + ...+

f (n)(x0)

n!
(x− x0)n + ...

is called the Taylor expansion of f(x) in a neighborhood of x0.
For example, the function

f(x) = x3,

has its Taylor expansion at x0 = 1 being

f(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3

= 1 + 3(x− 1) + 3(x− 1)2 + (x− 1)3.

Note that in this example, the Taylor expansion terminates, since the fourth and higher
derivatives of x3 are vanishing identically.

4. Shift of Summation Index

Using the summation notation, a1+ ...+an can be conveniently written as
∑n

i=1 ai. Of
course, there is no restriction to choosing the symbol i as the index. In fact, writing the
sum as

∑n
j=1 aj is also valid. The indices i and j in the summation expressions are called

“dummy indices” because they are merely place-holders and do not appear in the result
of the sum. Essentially, we do not even need to have j to start strictly from 1 and end at
n. The expression

∑n+15
k=15 ak−15 represents exactly the same summation a1 +a2 + ...+an,

because, despite a different range of the dummy index, what’s being summed up remains
unchanged.

The observation in the previous paragraph applies to the case of power series. In
the power series a0 + a1(x − x0) + a2(x − x0)

2 + ..., the form of a general term is
an(x− x0)n, hence the series can be written as

∑∞
n=0 an(x− x0)n representing the limit
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limN→∞
∑N

n=0 an(x−x0)n. Again, there is no restriction in our choice of the symbol n as
the index, nor there is any restriction to choosing zero as the starting value of the index.
The expressions

∑∞
n=2 an−2(x − x0)n−2 and

∑−∞
k=10 a10−k(x − x0)10−k both represent the

same power series.

Through the following exercise, we will learn how to shift the index to obtain certain
desired forms of the summation. One reason for this is that sometimes, we need to
compare two or more power series, so it would be convenient if we are looking at the
corresponding terms of the same power of x.
Exercise. Put the following power series in the summation form in which the power of
(x− x0) is the dummy index n:

∞∑
n=1

nanx
n−1 + 2x

∞∑
n=0

anx
n.

Answer. Letting m = n− 1 in the first sum, we have that m starts from zero and goes
to infinity. Similarly, let k = n+ 1 in the second sum. Therefore,

∞∑
n=1

nanx
n−1 + 2x

∞∑
n=0

anx
n

=
∞∑

m=0

(m+ 1)am+1x
m + 2

∞∑
n=0

anx
n+1

=
∞∑

m=0

(m+ 1)am+1x
m + 2

∞∑
k=1

ak−1x
k.

Now since m, k are dummy indices, we could replace them by n, obtaining
∞∑
n=0

(n+ 1)an+1x
n + 2

∞∑
n=1

an−1x
n

=a1 +
∞∑
n=1

((n+ 1)an+1 + 2an−1)x
n.

5. Appendix: The Notion of Convergence

When we say that a sequence {an} tends to 1, or converges to 1, what do we exactly
mean? You can say, these numbers an “approach” 1 as n gets larger. But, again, what
does “approach” mean exactly? If you think about this for a while, you will perhaps
notice that “approaching” implies that one could put a “window” near the value 1, say
the open interval (0.9, 1.1), and there exists a moment after which all the an’s are within
this “window”. Moreover, one could set this “window” to be however small he likes, and
the moment being described always exists. It is probably because of this intuition, we
have the formal definition for {an} to be convergent, which lies at the base of the subject
of mathematical analysis:

Definition. An infinite sequence of real numbers {an}∞n=0 is said to be converging
to a if for any positive number ε > 0 (i.e., half the size of our “window”), there exists a
positiver integer N (i.e., the described “moment”), such that for all n > N , |an − a| < ε
(i.e., all the future numbers in the sequence lie in the “window”).
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Now, using this notion of convergence, we prove the first two claims of the ratio test
for infinite series. To be precise, we prove the claims for special values of k’s just to
make the argument easier to understand. First, note that an infinite series

∑∞
i=1 an is

equivalent to the sequence {sn}∞n=1 where sn =
∑n

i=1 ai is the sum of the first n terms in
the infinite series. For all n, such sn are called partial sums of the infinite series.

Statement 1: Given an infinite series

a0 + a1 + ...+ an + ...,

if limn→∞
∣∣an+1

an

∣∣ = k < 1, then the series converges absolutely.

Proof for the special case k = 0.8: Because it is given limn→∞
∣∣an+1

an

∣∣ = 0.8, if we set the

window around 0.8 to be (0.7, 0.9), then there exists a positive integer N such that for all
n > N , we have 0.7 <

∣∣an+1

an

∣∣ < 0.9. Now the infinite series s = |a0|+ |a1|+ ...+ |an|+ ...
can be viewed has having two parts, one is

sN = |a0|+ ...+ |aN |,

which is clearly a finite number; the other is

s− sN = |aN+1|+ ...+ |a2N |+ ...

Now note that the ratio between two successive terms starting from index N + 1 is less
than 0.9, which means,

|aN+k| =
|aN+k|
|aN+k−1|

|aN+k−1| =
|aN+k|
|aN+k−1|

|aN+k−1|
|aN+k−2|

|aN+k−2|

= ... =
|aN+k|
|aN+k−1|

|aN+k−1|
|aN+k−2|

...
|aN+1|
|aN |

|aN | < 0.9k|aN |.

Therefore,

s− sN < (0.9 + 0.92 + 0.93 + ...)|aN | =
1

1− 0.9
|aN | = 10|aN |,

which is finite. Combining with the fact that sN is finite, we know that the sum
|a0| + |a1| + ... has to be finite. A theorem says, if a sequence of numbers is non-
decreasing and bounded from above by a finite number, then it converges. Now our
sequence {|a0|+ ...+ |an|}∞n=0 is non-decreasing and bounded by a finite number. There-
fore, it converges, i.e., the original series converges absolutely.

Statement 2: Given an infinite series

a0 + a1 + ...+ an + ...,

if limn→∞
∣∣an+1

an

∣∣ = k > 1, then the series diverges.
Proof for the special case k = 1.2: For the same reason as before, we can set a window
around 1.2 to be (1.1, 1.3), and there exists a positive integer N such that for all n > N ,
1.1 <

∣∣an+1

an

∣∣ < 1.3. And we could assume without loss of generality that aN 6= 0.
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Therefore,

|aN+k| =
|aN+k|
|aN+k−1|

|aN+k−1| =
|aN+k|
|aN+k−1|

|aN+k−1|
|aN+k−2|

|aN+k−2|

= ... =
|aN+k|
|aN+k−1|

|aN+k−1|
|aN+k−2|

...
|aN+1|
|aN |

|aN | > 1.1k|aN |.

To finish the proof, again, we cite a theorem: if the series a0 + a1 + ... + an + ... is
convergent, then ak → 0 as k → ∞. In our case, {an} can never tend to zero because
|aN+k| > 1.1k|aN | > |aN | for any positive integer k. Therefore, the original series is
divergent.


