HOMEWORK 9

Due: 11/09/2016

1. Textbook Exercises

10.5: $3,4,7,11,22$
10.6: $2,8,12,15$

Note: (1) By a "steady state solution", we mean a solution that is independent of t. (2) For question 10.5.7, work from scratch following Separation of variables \Rightarrow Twopoint $B V P \Rightarrow$ Formal Fourier series expansion; and similarly for question 10.6.15. For the rest of the questions, you may choose to use known formulae, if applicable.

2. Additional Exercises

A1-A4. Problem 74, 75, 76, 78 from Prof. Nolen's Additional Homework Problems.

Hints:
A1(No.74): In principle, this is how we solved initial-boundary problem for heat equations.
A2(No.75): Find a steady-state solution to the boundary-value problem. There turns out to be only one other than the constant zero solution.
A3(No.76): Just write down the initial boundary value problem satisfied by $v(t, x)$; no need to solve.
A4(No.78): You'll need to figure out what α is in $\alpha^{2} u_{x x}=u_{t}$ satisfied by the given $w(t, x)$. Moreover, if you are interested, you may find out that $E(t):=$ $\int_{-\infty}^{\infty} w(t, x) d x$ equals to a fixed constant for all t. This is not surprising since, in this case, one expects the total amount of heat along the infinite rod to be a conserved quantity over time. For those who are curious, a little trick for computing $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ is taking the product

$$
I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)=\int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

then turn to polar coordinates:

$$
I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

