HOMEWORK 6

Due: 10/19/2016

1. Textbook Exercises

6.1: $3,6,9,26,27$
6.2: $3,8,9,14,16$
6.3: $6,14,16,17,21,33,37$

Comment: Of course, a Laplace transform can be computed from the scratch using its very definition, but using known facts such as the first and second shifting formulae and the derivative formulae can quite often simplify calculation. There's not much theory in here, just practice, and pick up some sensitivity.

2. Additional Questions

A1. Suppose that

$$
\mathcal{L}\{f(t)\}=F(s) .
$$

Use the definition of the Laplace transform to derive a formula for $\mathcal{L}\{f(a t)\}$, where $a>0$ is a constant. Why do we require that the constant a is positive? How would you test the correctness of your formula (Optional)?

A2. Use the derivative formula

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)
$$

to show that

$$
\mathcal{L}\left\{\int_{0}^{t} f(x) d x\right\}=\frac{\mathcal{L}\{f(t)\}}{s} .
$$

Use this latter formula to compute $\mathcal{L}^{-1}\left\{s^{-2}\right\}$, then compare with what you learned before about $\mathcal{L}\{t\}$.

A3. Use the Laplace and inverse Laplace transforms to solve the second order differential equation

$$
y^{\prime \prime}-(a+b) y^{\prime}+(a b) y=0
$$

with initial values set to be $y(0), y^{\prime}(0)$, where a, b are arbitrary real constants.

