HOMEWORK 4

Due: 09/26/2016

1. Textbook Exercises

5.1: $5,13,18,21,25$;
5.2: $2,10,15 ;$

Comments:

For the questions on series solutions which ask for first few coefficients in the series rather than a recurrence formula, both successive differentiation and undetermined coefficients are applicable. With practice, you may develop a taste as to when to use which.

2. Additional Questions

A1: Solve Question 42 in Prof. Nolen's Additional Homework Problems.
A2: Solve Question 49 in Prof. Nolen's Additional Homework Problems.
A3: Here I present a proof of the statement: If a power series centered at zero, say, $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$, is convergent at $x=1$, then it must be absolutely convergent at all x satisfying $|x|<1$. (In particular, this implies that the set of x at which the power series converges absolutely must be an interval.) Your task is to fill in the marked "gap" within my argument below.

Proof. By the assumption, the series

$$
a_{0}+a_{1}+\ldots+a_{n}+\ldots
$$

converges. Let L be its limit. Thus, by the definition of convergence, for any $\epsilon>0$, there exists a positive integer $N>0$ such that for all $n \geq N$ the inequality

$$
\left|a_{0}+a_{1}+\ldots+a_{n}-L\right|<\epsilon
$$

holds. In particular, this implies that

$$
\begin{aligned}
\left|a_{n+1}\right| & =\left|\left(a_{0}+\ldots+a_{n+1}-L\right)-\left(a_{0}+\ldots+a_{n}-L\right)\right| \\
& \leq\left|a_{0}+\ldots+a_{n+1}-L\right|+\left|a_{0}+\ldots+a_{n}-L\right| \\
& <2 \epsilon
\end{aligned}
$$

for all $n \geq N$.
Now let us examine the series $\left|a_{0}\right|+\left|a_{1} x\right|+\ldots+\left|a_{N} x^{N}\right|+\left|a_{N+1} x^{N+1}\right|+\ldots$, where $|x|<1$. The sum of the first N terms is clearly finite. To see that the sum of the entire series is finite, it suffices to show that

$$
\left|a_{N+1} x^{N+1}\right|+\left|a_{N+2} x^{N+2}\right|+\ldots<\infty,
$$

when $|x|<1$. Indeed, since $\left|a_{n+1}\right|<2 \epsilon$ for all $n \geq N, \ldots$
(GAP!)
Therefore, the original series converges absolutely at all $-1<x<1$.

