
EXAM II SOLUTIONS, MATH 353 FALL 2016

I have neither given nor received any unauthorized help on this exam and I have con-
ducted myself within the guidelines of the Duke Community Standard.

Name: Signature:

Instructions: You may not use any notes, books, calculators or computers. Moreover,
you must also show the work you did to arrive at the answer to receive full credit. If
you are using a theorem to draw some conclusions, quote the result. This test contains
8 pages and 4 questions. You have 50 minutes to answer all the questions. Good
Luck !

Laplace Transforms:

L{1} =
1

s
L{sin at} =

a

a2 + s2

L{t} =
1

s2
L{cos at} =

s

a2 + s2

L{eatf(t)} = F (s− a) L{uc(t)f(t− c)} = e−csF (s)

L{tf(t)} = − d

ds
F (s) L{f ′(t)} = −f(0) + sF (s)

L{δ(t− c)} = e−cs L{(f ∗ g)(t)} = F (s)G(s)

Question Max. Points Score

1 25

2 25

3 20

4 30

Total 100
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Question 1. (25 points)

(a)(5 points) Let f(t), g(t) be functions defined on [0,∞), write down the definition of
the convolution between f and g:

(f ∗ g)(t) :=

∫ t

0

f(t− τ)g(τ)dτ

(b)(5 points) List two properties of the convolution other than L{(f ∗g)(t)} = F (s)G(s).

• (c1f1 + c2f2) ∗ g = c1(f1 ∗ g) + c2(f2 ∗ g)
• f ∗ g = g ∗ f
• f ∗ (g ∗ h) = (f ∗ g) ∗ h

(c)(15 points) Using the method of Laplace transform, find a funcion y(t) which satisfies

y(t) = et
[
1 +

∫ t

0

e−τy(τ)dτ

]
.

Note that the right hand side of the equation above is simply

et +

∫ t

0

et−τy(τ)dτ.

Application of the Laplace transform to both sides of the equation and using
the formula L{(f ∗ g)(t)} = F (s)G(s) yields

L{y(t)} = L{et}+ L
{∫ t

0

et−τy(τ)dτ

}
=

1

s− 1
+ L{et}L{y(t)}.

Denoting L{y(t)} as Y (s), we have

Y (s) =
1

s− 1
+

1

s− 1
Y (s).

From this, one easily solves

Y (s) =
1

s− 2
.

By the first shifting formula L{eatf(t)} = F (s− a), one concludes that

y(t) = L−1{Y (s)} = e2t.
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Question 2. (25 points)

(a)(5 points) Sketch the graph of the periodic function f(x) satisfying{
f(x) = ex, −π ≤ x < π,
f(x) = f(x+ 2π), x ∈ R.

(Sketch omitted.)

(b)(10 points) Show by definition that the Fourier series of f(x) is

g(x) =
sinhπ

π

(
1 + 2

∞∑
n=1

(−1)n

1 + n2
(cosnx− n sinnx)

)
.

Hint: ∫
ex sinnxdx =

1

n2 + 1
ex(sinnx− n cosnx),∫

ex cosnxdx =
1

n2 + 1
ex(cosnx+ n sinnx).

Taking 2π(= 2L) as the period, the Fourier series takes the form

g(x) =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx).

By the Euler-Fourier formulae, we have

a0 =
1

π

∫ π

−π
exdx =

1

π
(eπ − e−π) =

2

π
sinh(π),

an =
1

π

∫ π

−π
ex cosnxdx =

1

π

1

n2 + 1
ex(cosnx+ n sinnx)

∣∣π
−π

=
1

π

1

n2 + 1
[eπ(−1)n − e−π(−1)n]

=
1

π

2

n2 + 1
(−1)n sinh(π),

bn =
1

π

∫ π

−π
ex sinnxdx =

1

π

1

n2 + 1
ex(sinnx− n cosnx)

∣∣π
−π

= − 1

π

n

n2 + 1
[eπ(−1)n − e−π(−1)n],

= − 1

π

2n

n2 + 1
(−1)n sinh(π).

Therefore,

g(x) =
sinh(π)

π
+

1

π

∞∑
n=1

(
2

n2 + 1
(−1)n sinh(π) cosnx− 2n

n2 + 1
(−1)n sinh(π) sinnx

)

=
sinh(π)

π

(
1 + 2

∞∑
n=1

(−1)n

1 + n2
(cosnx− n sinnx)

)
,

as desired.
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(c)(10 points) What is the value of g(π)? What is the limit of the infinite series
∞∑
n=1

1

1 + n2
.

Show your reasoning.

By the Fourier convergence theorem,

g(π) =
1

2
(f(π−) + f(π+)) =

1

2
(eπ + e−π) = coshπ.

On the other hand, by its very expression

g(π) =
sinhπ

π

(
1 + 2

∞∑
n=1

1

1 + n2

)
.

Comparing the two equalities above, we have
∞∑
n=1

1

1 + n2
=

1

2
(π cothπ − 1).
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Question 3. (20 points)

(a)(10 points) Solve the two-point boundary value problem for X(x):{
X ′′ + λX = 0, 0 < x < π,
X(0) = X(π) = 0

by finding all the eigenvalues/eigenfunctions.
Note: You may assume that all the eigenvalues are real.

Assuming that the eigenvalues are real, there are three cases: λ = 0, > 0, < 0.

Case 1: λ = 0. We have X = ax+ b. The boundary conditions impose

b = 0, aπ + b = 0.

Hence, a = b = 0; and λ = 0 is not an eigenvalue.

Case 2: λ = µ2 > 0. This implies

X = c1 cosµx+ c2 sinµx.

Thus,
X(0) = c1 = 0, X(π) = c1 cosµπ + c2 sinµπ = 0.

It follows that µ is a positive integer. Indeed, we have obtained a sequence of eigen-
values (indexed by k) λk = µ2

k, where µk = k > 0 are integers. The corresponding
eigenfunctions can be chosen to be Xk(x) = sin kx.

Case 3: λ = −µ2 < 0. We have

X = c1e
µx + c2e

−µx.

Here, c1, c2 must satisfy

X(0) = c1 + c2 = 0, X(π) = c1e
µπ + c2e

−µπ = 0.

Regardless of the value of µ, one must have c1 = c2 = 0. No eigenvalues in this case.
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(b)(10 points) For which values of α > 0 does the two-point boundary value problem{
y′′ + 4y = cosx,
y(0) = y(α) = 0.

have

(i) a unique solution;
(ii) infinitely many solutions.

Hint: The formula cos 2α = 2 cos2 α− 1 may be useful for part (ii).

A particular solution of y′′ + 4y = cosx is

yp =
1

3
cosx,

which can be easily found with the method of undetermined coefficients. Hence, the
general solution of the equation y′′ + 4y = cosx takes the form

y =
1

3
cosx+ c1 cos 2x+ c2 sin 2x.

Considering the boundary conditions, we have
y(0) =

1

3
+ c1 = 0,

y(α) =
1

3
cosα + c1 cos 2α + c2 sin 2α = 0.

Written in matrix form, these conditions are(
1 0

cos 2α sin 2α

)(
c1
c2

)
= −1

3

(
1

cosα

)
.

(i) The original boundary problem has a unique solution if and only if the coefficient
matrix (

1 0
cos 2α sin 2α

)
is invertible. Equivalently, sin 2α 6= 0. For positive α’s, this is saying that α 6= kπ

2
, for

any integer k > 0.

(ii) The boundary problem has infinitely many solutions if and only if the coefficient
matrix is degenerate, and the vector −1

3
(1, cosα)T lies in the column space of the

matrix.
The degeneracy of the matrix imposes that sin 2α = 0, that is, α = kπ

2
for k > 0 being

an integer. The condition that −1
3
(1, cosα)T lies in the column space then requires

that (1, cos 2α) is parallel to (1, cosα), as vectors in R2. As a result, we need

cos 2α = cosα

to hold, which is

2 cos2 α− cosα− 1 = (2 cosα + 1)(cosα− 1) = 0.

In order for the solution to be compatible with sin 2α = 0, we must have cosα = 1.
Therefore,

α = 2kπ, k = 1, 2, 3, ...
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Question 4. (30 points)

Consider the initial boundary value problem uxx = ut − sinx, 0 < x < π, t > 0,
u(0, t) = u(π, t) = 0, t > 0
u(x, 0) = 2 sin 2x+ 5 sin 5x, 0 ≤ x ≤ π.

(a)(10 points) Let w(x) be a steady-state solution associated to the problem above,
that is, w(x) satisfies the differential equation and the boundary conditions. Find w(x).

The equation for w(x) is
w′′ = − sinx.

Hence, an obvious particular solution for w(x) is

w(x) = sinx,

which already satisfies the boundary conditions

w(0) = w(π) = 0.

(b)(5 points) Let v(x, t) = u(x, t)−w(x). Write down the initial boundary value problem
satisfied by v(x, t).

It is a straight-forward verification that v(x, t) satisfies vxx = vt, 0 < x < π, t > 0,
v(0, t) = v(π, t) = 0, t > 0
v(x, 0) = 2 sin 2x+ 5 sin 5x− sinx, 0 ≤ x ≤ π.

In particular, note that the (sinx)-term in the equation is cancelled, which is expected
since, loosely speaking, it is a term of “nonhomogeneity”.

(c)(15 points) Solve the problem you wrote down in part (b) using the method of sep-
aration of variables. Then conclude by writing down the solution u(x, t) of the original
problem.
Hint: Your answer for Question 3(a) may be helpful.

Suppose that v(x, t) = X(x)T (t) is a solution of the boundary value problem for v, we
must have

X ′′T = XT ′,

leading to
X ′′

X
=
T ′

T
= −λ,

for some constant λ. This splits into two ODEs:{
X ′′ + λX = 0,
T ′ + λT = 0.

Furthermore, since v(0, t) = X(0)T (t) = 0, v(π, t) = X(π)T (t) = 0 for all t > 0, we
have

X(0) = X(π) = 0.

(cont. on next page)
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Consequently, X(x) satisfies the two-point boundary value problem as given in Ques-
tion 3(a). The eigenvalues are

λk = k2,

with corresponding eigenfunctions chosen to be

Xk(x) = sin kx,

for k = 1, 2, 3, ...
For a particular index k, the ODE for T (t) is then

T ′ + λkT = 0.

One immediately solves for
Tk(t) = e−k

2t.

Hence, we obtain the functions

vk(x, t) = Xk(x)Tk(t) = e−k
2t sin kx.

In general, a superposition

v(x, t) =
∞∑
k=1

bkvk(x, t) =
∞∑
k=1

bke
−k2t sin kx

solves the boundary value problem for v. To meet the initial condition, we let t = 0 in
the superposition formula above, obtaining

∞∑
k=1

bk sin kx = 2 sin 2x+ 5 sin 5x− sinx.

This implies that

b2 = 2, b5 = 5, b1 = −1; bk = 0 (k 6= 1, 2, 5)

and
v(x, t) = −e−t sinx+ 2e−4t sin 2x+ 5e−25t sin 5x.

To conclude, the solution of the original IBVP (in u(x, t)) is

u(x, t) = v(x, t) + w(x) = (1− e−t) sinx+ 2e−4t sin 2x+ 5e−25t sin 5x.
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