
LECTURE 6: VARIATION OF PARAMETERS

1. Variation of Parameters

1.1. Worksheet for Variation of Parameters. In this section, we are going to learn a
method which can be used to find particular solutions for non-homogeneous linear second
order ODEs, called the variation of parameters. The prerequisite of using this method is
that we know a fundamental set of solutions of the corresponding homogeneous equation.
And the idea is to see if we could obtain a particular solution of the non-homogeneous
equation by combining the solutions to the homogeneous equations. Here, we will work
through an example and see how this idea works. The equation for which we are going
to find a particular solution is

y′′ + 2y′ + y = cosx.

(1) First, let us not forget that the method of undetermined coefficients applies to this
equation. Find a particular solution taking this approach.

Answer. Here we use the complex trick. Let z(x) be a complex valued function. It
follows that if z satisfies the equation

z′′ + 2z′ + z = eix,

then the real part of z, Re(z), satisfies the original equation. Since i is not a root of the
characteristic polynomial p(λ) = λ2 + 2λ+ 1 = (λ+ 1)2, our guess of the solution z is

z(x) = Aeix,

where A is some undetermined complex constant. Plugging this form in the equation,
we have

(−A+ 2iA+ A)eix = eix.

Therefore, A = − i
2

and

y(x) = Re(z(x)) = Re
(
− 1

2
ieix

)
= Re

(
− 1

2
(i cosx− sinx)

)
=

1

2
sinx,

is a particular solution to the equation y′′ + 2y′ + y = cosx.

(2) The method of variation of parameters proposes another way to solve the original
equation. As mentioned, let us first find a fundamental set of solutions of the homoge-
neous equation

y′′ + 2y′ + y = 0,

and denote it as {y1, y2}.
Answer. Note that this equation is constant coefficient and the characteristic poly-

nomial is p(λ) = (λ + 1)2. We know by the theory of constant coefficient homogeneous
linear equations that a fundamental set of solutions is {e−x, xe−x}.

(3) Now supposing that u1(x)y1(x) + u2(x)y2(x) solves the equation y′′+ 2y′+ y = cosx
for some functions u1(x) and u2(x), what equations should u1, u2 satisfy? Can we find
such functions u1, u2?
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Answer. Denoting u1(x)y1(x) + u2(x)y2(x) as z(x), we need that

z′′ + 2z′ + z = cosx.

This is

cosx = (u1y1 + u2y2)
′′ + 2(u1y1 + u2y2)

′ + (u1y1 + u2y2)

= (u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2)
′ + 2(u′1y1 + u1y

′
1 + u′2y2 + u2y

′
2) + (u1y1 + u2y2)

= (u′1y1 + u′2y2)
′ + (u′1y

′
1 + u′2y

′
2) + (u1y

′′
1 + u2y

′′
2)

+ 2(u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2) + (u1y1 + u2y2)

= (u′1y1 + u′2y2)
′ + 2(u′1y1 + u′2y2) + (u′1y

′
1 + u′2y

′
2) + u1(y

′′
1 + 2y′1 + y1)

+ u2(y
′′
2 + 2y′2 + y2)

= (u′1y1 + u′2y2)
′ + 2(u′1y1 + u′2y2) + (u′1y

′
1 + u′2y

′
2),

where we have used the fact that y1, y2 are solutions to the homogeneous equation to
eliminate the terms y′′1 + 2y′1 + y1 and y′′2 + 2y′2 + y2. One sufficient condition for the
equality above to hold is

u′1y1 + u′2y2 = 0, u′1y
′
1 + u′2y

′
2 = cosx.

These two equations are perhaps more recognizable if we put them in the matrix form(
y1 y2
y′1 y′2

)(
u′1
u′2

)
=

(
0

cosx

)
.

From linear algebra, we know that in the domain where the equation has existence and
uniqueness property, if y1 and y2 form a set of fundamental solutions, then the Wronskian

W (y1, y2) = det

(
y1 y2
y′1 y′2

)
is nonzero for all values of x. Therefore, the coefficient matrix is always invertible and
we have (

u′1
u′2

)
=

(
y1 y2
y′1 y′2

)−1(
0

cosx

)
=

1

W (y1, y2)

(
y′2 −y2
−y′1 y1

)(
0

cosx

)
.

Up to this point, our calculation has been symbolic. Now let us plug in y1 = e−x and
y2 = xe−x. The result is

u′1 = −x cosxex,

u′2 = cosxex.

Taking the antiderivatives would give us the choices

u1 = −1

2
(x cosxex + x sinxex − sinxex),

u2 =
1

2
(sinxex + cosxex).
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Finally,

u1y1 + u2y2 = −1

2
(x cosxex + x sinxex − sinxex)e−x +

1

2
(sinxex + cosxex)xe−x

=
1

2
sinx,

which coincides with the particular solution we obtained using the undetermined coeffi-
cients.

1.2. Remarks. (1) As you may have noticed, the thought behind the variation of pa-
rameters resembles those behind the method of integrating factors or reduction of order,
in that one seem to be asking: can we multiply the solution or the equation by a function
so that the equation is simplified or other solutions can be obtained from doing this. One
technical difference is that in establishing the equations for u1, u2 in the current problem,
we did not go straight forwardly to the end and write down expressions involving u′′1 and
u′′2, but instead, we picked out the expressions u′1y1 + u′2y2 and u′1y

′
1 + u′2y

′
2 in the middle

of the calculation and observed that there is an obvious way to set values to them. This
makes it a lot easier to figure out what u1 and u2 are in the end.

(2) We have seen that the method of variation of parameters is capable of solving
non-homogeneous constant coefficient equations which can be solved by undetermined
coefficients, but in a more complex way.

(3) The method of variation of parameters applies to not only constant coefficient
non-homogeneous equations, but to second order linear equations in general, provided
that fundamental solutions of the corresponding homogeneous equation are given. This
part will be summarized in the next section. In fact, variation of parameters applies to
higher order linear ODEs, but we will not go into the details here.

2. Summary

2.1. The Method of Variation of Parameters. Here we summarize the main result
of variation of parameters for second order non-homogeneous linear ODEs in general.
Consider the equation

y′′ + p(x)y′ + q(x)y = g(x).

Let y1, y2 form a fundamental set of solutions to the homogeneous equation y′′+p(x)y′+
q(x)y = 0. We could always choose functions u1, u2 such that u1y1 + u2y2 is a particular
solution of the original equation, where u1, u2 can be computed by(

u′1(x)
u′2(x)

)
=

1

W (y1, y2)

(
y′2 −y2
−y′1 y1

)(
0

g(x)

)
.

Sketch of Proof. Assuming that z = u1y1 + u2y2 is a solution of the original equation,
then, plugging this in the equation, we could obtain

g(x) = (u′1y1 + u′2y2)
′ + p(x)(u′1y1 + u′2y2) + (u′1y

′
1 + u′2y

′
2).

So an obvious choice of u1, u2 is such that

u′1y1 + u′2y2 = 0, u′1y
′
1 + u′2y

′
2 = g(x).

Written in the matrix form, this is just(
y1 y2
y′1 y′2

)(
u′1
u′2

)
=

(
0

g(x)

)
.
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Noting that y1, y2 are linearly independent, our conclusion follows.

2.2. Second order linear ODEs: Summary. Until now, we have considered second
order linear ordinary differential equations in the following aspects:

• Constant coefficients or not?
• Homogeneous or not?
• In the homogeneous case, what if we know one solution already?
• In the non-homogeneous case, what if a fundamental set of solutions for the

homogeneous equation is known?

The corresponding results can be put in a chart:
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(b) Non-constant Coefficients

Figure 1. Second Order Linear ODEs

3. Appendix: The anti-derivative of xex cosx?

Here we present a way to find the anti-derivative of xex cosx. First, we would
guess that the anti-derivative would involve terms such as xex cosx, xex sinx and maybe
ex cosx, ex sinx. Let us calculate the derivatives of these functions.

(xex cosx)′ = ex cosx+ xex cosx− xex sinx,(1)

(xex sinx)′ = ex sinx+ xex sinx+ xex cosx,(2)

(ex cosx)′ = ex cosx− ex sinx,(3)

(ex sinx)′ = ex sinx+ ex cosx.(4)

Our goal is to combine these equations so that the right hand side reduces to a multiple
of xex cosx. It can be seen that adding the first two equations partially does the job, with
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two extra terms ex cosx+ ex sinx. One realizes immediately that these two extra terms
can be replaced using the last equality above. So we have, calculating (1) + (2)− (4):

(xex cosx+ xex sinx− ex sinx)′ = 2xex cosx.

Therefore, the anti-derivative of xex cosx is

1

2
(xex cosx+ xex sinx− ex sinx).

As an exercise, try to find the anti-derivative of xex sinx.


