LECTURE 5: SECOND ORDER LINEAR ODES

1. INTRODUCTION

Hopefully, this lecture will be mostly review for each of us. We discuss the second
order linear ordinary differential equations. To start with, by the definition of linearity
and order of ODEs, we know that these equations in general take the form:

P(x)y"” + Q(2)y + R(z)y = S(x),

for some continuous functions P(x), Q(x), R(x), S(x). Again, to make the situation easier
to deal with, we assume that P(z) is always nonzero in the domain of definition, so the
form of the equations can be simplified to

y' +p@)y + q(z)y = g(x).

Remember, when g(x) = 0, this equation is called homogeneous. Lying at the foundation
is perhaps the theorem of existence and uniqueness of solutions:

Theorem (Existence & Uniqueness) For the initial value problem

y' @)y +qlz)y =g(x),  y(te) = yo, ¥ (to) = do,

if p(x), q(x), g(z) are continuous within some interval I containing to, then solution exists
and is unique on the interval I.

The power of this theorem can be seen when we take into account the linearity of the
equations. Remember that linearity implies that all the solutions of a homogeneous
equation form a vector space, that is, the sum and scalar multiple of solutions remain
solutions. Moreover, the mapping

¢ y(@) = (y(to),y'(t))"

is a one-to-one and onto (by the Theorem) linear transformation between the solution
space and R?. It follows that the solution space is real two dimensional. In other words,
for linear homogeneous ODEs of second order, once two linearly independent solutions
are found, then all solutions are linear combinations of these two fundamental solutions,
and the coefficients can be determined by the initial values.

Another use of linearity is in the argument that in order to find all the solutions of
a non-homogeneous equation, it suffices to find a particular solution and the the funda-
mental set of solutions to the corresponding homogeneous equation. We have seen this
before. Certain results will be summarized in the last section.
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2. CONSTANT COEFFICIENT HOMOGENEOUS LINEAR ODES, CoOMPLEX ROOTS

For constant coefficient homogeneous linear ODEs, a standard model is the harmonic
oscillator (without external force),

mi + fr+ kx =0,

where the constant coefficients are positive. In general, we could allow negative coef-
ficients. For solving these equations, a common approach is to test whether there are
solutions in the form

Plugging this in the equation gives,
(mr® + fr+k)e™ = 0.

Now, whenever r is a root of the polynomial mr? + fr + k (called the characteristic
polynomial), x = €™ is a solution of the original equation. By the quadratic formula, the
roots are
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There are three cases:

(1) f? — 4mk > 0. There exist two distinct real roots 71,75. One can show that in
this case e, " are linearly independent, hence forming a fundamental set of solutions.

(2) f2 —4mk < 0. There exist two distinct complex roots a + ib,a — ib. In one of
the homework exercises, you will be asked to show when r is complex, we still have
d rt

dert = re™. So formally, e and e(®=®" hoth satisfy the equation, but this is essen-

tially

m(e™(cosbt +isinbt))” + f(e™(cosbt + isinbt))’ + k(e®(cosbt + isinbt))
=[m(e™ cosbt)” + f(e® cosbt) + k(e cosbt)] + i[m(e™ sinbt)" + f(e™ sinbt) + k(e sin bt)]
=0.

By looking at the real and imaginary parts alone, we obtain that e cos bt and e sin bt
are solutions to the equation. One can use the Wronskian to check that they are linearly
independent. Hence, {e cosbt, e sinbt} is a fundamental set of solutions.

(3) f2 —4mk = 0. In this case, we have a repeated root r and we learned that the
fundamental solutions are e, te™. See the next section for a general technique which
gives us the reason behind this result.

3. REPEATED ROOTS, REDUCTION OF ORDER

In the realm of second order homogeneous linear ODEs, one particularly useful tech-
nique in finding solutions is called the reduction of order. The motivation behind this
idea might be the attempt to answer the question: supposing that one solution y(x) of
the equation y” + p(x)y’ + q(z)y = 0 is known, can we find another solution which is
in the form v(z)y(z) for some non-constant function v(z)? (Sounds familiar? Yes, simi-
lar thought is used in deriving the integrating factors for the first order linear equations. )
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Now suppose that y(x) is known for solving the equation y” + p(x)y’ + q(z)y = 0.
Let v(x)y(x) be another solution. Then we have:

(vy)" + p(vy) + q(vy)
=(v'y +vy) +p('y +vy) + q(vy)
="y + 20"y +vy") + p(v'y + vy') + q(vy)
=v"y + 2y + py)v' +v(y" + py' + qy)
="y + (24 + py)v'
=0.

Thus, z = v/(z) satisfies the first order separable equation:
2y +(2y +py)z = 0.

Thus, z can be solved. Finally, v(z) can be found by a direct integration of z(x).

As an example, we use the reduction of order to complete the discussion in the case
of repeated roots of the constant coefficient homogeneous equations. Recall that a so-
1

lution is known to be y(t) = €™, where 1 = —5-f, because —f/m is the sum of the

(repeated) roots. Hence the function v(t) satisfies
0= e + (2<€rt)l + %ert)vl — et + (27’ + %)6”’0/ — et
This is,
v =0.

One choice of v(t) which is not constant is of course v(t) = t, as desired.

4. NON-HOMOGENEOUS EQUATIONS, UNDETERMINED COEFFICIENTS

This section aims at finding particular solutions for constant coefficient non-homogeneous
second order linear ODEs. Again, this should be a review and the main theorem is the
following.

Theorem. Consider the constant coefficient linear equation
ay” + by’ +cy = g(x),

with the characteristic polynomial p(\) = aA? 4+ b\ + c.

(1) If g(z) = P,(x) is a polynomial of degree n, then y, = x*(a,2" + ... + a1 + ay),
where s is the multiplicity of 0 as a root of p(\).

(2) If g(x) = P,(x)e"™, then y, = x°(a,2" +...+a1x+ap)e™, where s is the multiplicity
of r as a root of p(\).

(3) If g(x) = P,(z)e™ cosbx or g(z) = P,(x)e™ sinbx, then y, = z°[(apa™ + ... + a1z +
ag)e® cosbx + (b,x™ + ... + bix + by)e® sin bx], where s is the multiplicity of a + ib as a
root of p(A).

Remarks. (1) You may wonder, why could we always assume solution to take cer-
tain form when g(x) is in one of the three cases above? The reason is, we would expect
some function, after taking whose derivatives we’d obtain expressions in the form of g(x)
and that the coefficients in the guesses above can always be solved for. For more details,
refer to the proof of this theorem in the textbook.
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(2) Consider the equation
y' +p(x)y + q(x) = 2* + cos .

Now g(z) = 2 4 cosz which is not in one of the three forms described in the theorem.
Here is another place where the linearity of the equation becomes helpful, as one could
find solutions for
'+ @)y +q(z) = 2%,

and

y' +p(x)y +q(z) = cosz,
separately using the theorem and call them y;(z) and ya(x). Then, y;(z) + yo(z) solves
the original equation.



