
LECTURE 21: WAVE EQUATIONS, VIBRATION OF ELASTIC
STRING

1. Standing and Traveling Waves

Speaking about waves, there are two basic types: standing waves and traveling waves.
The former, as time evolves, the configuration of the wave changes by an amplifying
factor. To be precise, we have

u(x, t) = X(x)T (t),

in which u(x, t) denote the displacement of the particle at coordinate x of the string
at time t from its resting position. The latter, as time evolves, does not change the
configuration of the wave, but only travels in a certain direction at a certain velocity. In
symbols, this is just

u(x, t) = F (x− ct),
which means that wave, with configuration being the graph of F (x), is traveling to the
right at a velocity of c. Graphically, these two types of waves are illustrated below:

(a) Standing Wave (b) Traveling Wave

Figure 1. Two Types of Waves

For the wave equation that we are about to describe, it turns out that the standing
and traveling waves will give us two different views of its solution.

2. The Wave Equation c2uxx = utt

Given an elastic string of length L, we could imagine that the mass is concentrated
on certain particles along the string (xn, with xn+1 − xn = ∆x), and that each particle
is allowed to move vertically (Figure 2).
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Figure 2. Elastic String
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Furthermore, we assume that the tension along the string is a constant τ . Therefore,
the vertical component of the tension of the string connecting to xn, left and right, are
respectively

F` = −τ u(xn, t)− u(xn−1, t)

∆x
, Fr = τ

u(xn+1, t)− u(xn, t)

∆x
.

Hence, ignoring gravity, the force of the string at the particle xn is

F = F` + Fr = τ
u(xn + ∆x, t)− 2u(xn, t) + u(xn −∆x, t)

∆x
.

By Newton’s second law, we have

F = ma = ∆xρutt(xn, t),

where ρ is the density of the string. This gives us

utt(xn, t) =
τ

ρ

u(xn + ∆x, t)− 2u(xn, t) + u(xn −∆x, t)

∆x2
.

Taking the limit ∆x → 0 and using the Taylor expansion at x = xn (or using the
L’Hôpital’s rule twice), we obtain the equality

utt(xn, t) =
τ

ρ
uxx(xn, t).

Indeed, there is nothing special about the position of xn here, so let it be denoted by x
instead (0 < x < L). Also let us call τ/ρ as c2. The wave equation follows:

utt(x, t) = c2uxx(x, t), 0 < x < L, t > 0.

One may ask: what is c? In section 4, we will see that the solution of this equation is
the superposition of two traveling waves, one to the left, the other to the right, both
with velocity c.

3. Solution of Initial-Boundary Value Problems

Pick an elastic string of length L, hold it tight at the both ends, then pull the middle
of the string away from its resting position, release it from static, we’ll observe an unique
motion of the string over time. Mathematically, the condition we have put on the string
are exactly the following:

• Fixed ends: u(0, t) = u(L, t) = 0.
• Pulling the string from the resting position: u(x, 0) = f(x).
• String released from static: ut(x, 0) = 0.

Clearly, this is boundary values together with two pieces of initial values (since the equa-
tion has the second derivative with respect to t).

More generally, we could consider the following initial-boundary value problem

(I)

 utt = c2uxx, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ L.
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Furthermore, this problem can be reduced to two simpler problems, one with zero initial
velocity, the other with zero initial value.

(II)

 utt = c2uxx, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = f(x), ut(x, 0) = 0, 0 ≤ x ≤ L.

(III)

 utt = c2uxx, 0 < x < L, t > 0,
u(0, t) = u(L, t) = 0, t > 0,
u(x, 0) = 0, ut(x, 0) = g(x), 0 ≤ x ≤ L.

Exercise. Show that if u1(x, t) is a solution of (II) and u2(x, t) is a solution of (III),
then u1(x, t) + u2(x, t) is a solution of (I), assuming that f(x), g(x) in (I) are the same
as those in (II) and (III).

3.1. Zero Initial Velocity. That is, equation (II). Its solution is similar to that of
the heat equations. First consider separation of variables, then use boundary values
to narrow down the forms of the solution, finally, consider a superposition of solutions
which also satisfies the initial values.

3.1.1. Separation of Variables. Let

u(x, t) = X(x)T (t).

If this solve the wave equation, we must have

X(x)T ′′(t) = c2X ′′(x)T (t),

that is,
X ′′

X
(x) =

T ′′

c2T
(t).

As before, we know that the value of this expression is a constant, since it does not
depend on t, nor x. So, let

X ′′

X
(x) =

T ′′

c2T
(t) = −λ,

for some constant λ . Written in two ODEs, this is just{
X ′′ + λX = 0,
T ′′ + c2λT = 0.

3.1.2. Boundary Values. First, the fixed ends gives us

u(0, t) = u(L, t) = 0,

which, under our assumption of the form of solution u(x, t) = X(x)T (t), is just

X(0)T (t) = X(L)T (t) = 0,

leading to
X(0) = X(L) = 0.

With the equation
X ′′ + λX = 0,

it is an easy exercise of two-point boundary problem to show that the only eigenvalues
are

λ =
(nπ
L

)2
,
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and correspondingly,

Xn(x) = sin
nπ

L
x, Tn(t) = an cos

nπc

L
t+ bn sin

nπc

L
t, n = 1, 2, 3, ...

where an, bn are arbitrary constants.

3.1.3. Initial Values. Now we consider the initial values. In particular, if we let un(x, t) =
Xn(x)Tn(t), then

(un)t(x, 0) = 0

implies
T ′n(0) = 0,

hence
bn = 0

and, up to multiplication by a constant, we can choose Tn(t) = cos nπc
L
t and thus

un(x, t) = sin
nπ

L
x cos

nπc

L
t.

Finally, we note that any superposition of the un’s would satisfy the initial-boundary
value problem (II), except for one piece of the initial value: u(x, 0) = f(x). Therefore,
we let

u(x, t) =
∞∑
n=1

dnun(x, t) =
∞∑
n=1

dn sin
nπ

L
x cos

nπc

L
t.

Hence, by the initial value, we have

u(x, 0) = f(x) =
∞∑
n=1

dn sin
nπ

L
x.

The Fourier coefficients a sine series gives

dn =
2

L

∫ L

0

f(x) sin
nπ

L
xdx.

This completes the solving (II).

3.2. Zero Initial Position. That is, consider the initial-boundary value problem (III).
Before reading the solution below, you may consider trying to solve it as an exercise,
as it is quite similar to the preceding case. In fact, nothing is different in the steps of
separation of variables and considering the boundary values. There we had

Xn(x) = sin
nπ

L
x, Tn(t) = an cos

nπc

L
t+ bn sin

nπc

L
t, n = 1, 2, 3, ...

where an, bn are arbitrary constants.

Now the initial value is different. The homogeneous condition is at the position, which
requires

u(x, 0) = 0.

Similarly as before, convince yourself that this leads to an = 0, and, un to multiplication
by a constant,

Tn(t) = sin
nπc

L
t.

Therefore,we let

un(x, t) = Xn(x)Tn(t) = sin
nπ

L
x sin

nπc

L
t.
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And for each n = 1, 2, 3, ..., un(x, t) satisfies (III) except for the condition ut(x, 0) = g(x).

Finally, we superpose the un’s, and set

u(x, t) =
∞∑
n=1

knun(x, t) =
∞∑
n=1

kn sin
nπ

L
x sin

nπc

L
t.

By ut(x, 0) = g(x),
∞∑
n=1

nπc

L
kn sin

nπ

L
x = g(x).

Therefore, the coefficients kn are determined as

kn =
L

nπc

2

L

∫ L

0

g(x) sin
nπ

L
xdx.

This completes solving (III).

4. Traveling Waves and D’Alembert’s Formula

In this section, we look at the solutions of the wave equation

c2uxx = utt

from a different angle. First, let us consider the new variables

ξ = x− ct, η = x+ ct.

Exercise. Show that under the new variables, the wave equation above is equivalent to

uξη = 0.

By the fundamental theorem of calculus (use it twice!), we know that any solution of
this equation must be of the form

u(ξ, η) = F (ξ) +G(η),

for some functions F,G. (And, in fact, for any differentiable functions F (x) and G(x),
F (ξ) +G(η) solves the wave equation.)

Therefore, change the variables back to x, t in the solution, we have that any solution
of the wave equation must be of the form

u(x, t) = F (x− ct) +G(x+ ct),

which is simply the superposition of two traveling waves, one going to the left, the other
to the right, both of velocity c.

Furthermore, if we also know initial conditions, say,

u(x, 0) = f(x), ut(x, 0) = g(x),

then the solution is given by the d’Alembert’s Formula:

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(τ)dτ.


