
LECTURE 20: MORE HEAT CONDUCTION PROBLEMS

Following from the last lecture, we consider two more settings for the problem of heat
conduction in a rod. In one setting, instead of assuming the temperature at both ends
of the rod to be zero, we assume that they are some constants. In another, we assume
that both ends of the rod are insulated, that is, there is no heat conduction there. Using
symbols, the first setting can be simply described as

u(0, t) = T1, u(L, t) = T2,

for some constants T1, T2. The second setting is just

∂

∂x
u(0, t) =

∂

∂x
u(L, t) = 0.

1. Constant Boundary Values

The initial-boundary value problem is now

(I)

 α2uxx = ut, 0 < x < L, t > 0,
u(0, t) = T1, u(L, t) = T2, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ L.

To solve it, first suppose that some function v(x, t) satisfies

(II)

{
α2vxx = vt, 0 < x < L, t > 0,
v(0, t) = T1, v(L, t) = T2, t > 0.

Then, it is clear by the linearity of the equation that w(x, t) = u(x, t) − v(x, t) would
satisfy

(III)

 α2wxx = wt, 0 < x < L, t > 0,
w(0, t) = 0, w(L, t) = 0, t > 0,
w(x, 0) = f(x)− v(x, 0), 0 ≤ x ≤ L,

which is an initial-boundary value problem with zero boundary values (We know how
to solve this!). In other words, to solve (I), we need only to find a particular solution
v(x, t) to (II), then solve (III), obtaining w(x, t). Finally, u(x, t) = v(x, t) + w(x, t) is a
solution to (I).

From the analysis above, we can see that the effectiveness of the idea relies on how
easy it is to find a particular solution of (II). In fact, this task is quite simple: we do not
even need v(x, t) to depend on t. Suppose that v(x, t) = v(x) is a solution of (II). We
have

α2v′′ = 0, v(0) = T1, v(L) = T2.

Thus immediately,
v(x) = ax+ b, v(0) = T1, v(L) = T2.

We have

a =
T2 − T1
L

, b = T1,
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and

v(x) =
T2 − T1
L

x+ T1.

In essence, we have completed our theory for solving the initial-boundary value prob-
lem (I). However, it is always instructive to ask: why do we think of finding a particular
solution of (II) at all? The answer is perhaps, again, superposition. This really isn’t
something new to us. Maybe you could remember from the theory of ODEs. To solve
a non-homogeneous linear equation, we find a particular solution first; then superpose
with any homogeneous solution to get general solutions. There, we did not use the exact
word “superpose”, but the idea is completely similar. Finally, we stress that it is the
linearity of the equation that enables such superposition.

Remark. The function v(x) is sometimes called a static solution of (II), which lit-
erally means: does not vary with time.

2. Rod with Insulated Ends

In this case, the initial-boundary value problem is

(IV)

 α2uxx = ut, 0 < x < L, t > 0,
ux(0, t) = 0, ux(L, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ L.

Solution of this problem is completely analogous to the one with zero boundary values.
So you might want to solve this as an exercise to test your understanding of the previous
lecture. The crucial steps are still: (1) separation of variables; (2) taking into account
the boundary values; (3) using the principle of superposition to fit the initial condition.
Let’s do it.

2.1. Separation of Variables. Let

u(x, t) = X(x)T (t)

for some functions X(x), T (t). Thus, plugging in the equation, we could obtain

X ′′

X
(x) =

T ′

α2T
(t),

which does not depend on t not x, hence a constant, say, −λ. Now we have{
X ′′ + λX = 0,
T ′ + α2λT = 0.

2.2. Boundary Values. For u(x, t) = X(x)T (t), the boundary values are

X ′(0)T (t) = X ′(L)T (t) = 0.

For non-zero T (t), this is just

X ′(0) = X ′(L) = 0.

Therefore, X(x) is satisfying {
X ′′ + λX = 0
X ′(0) = X ′(L) = 0.
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As before, this is treated as a two-point boundary value problem. The general solution
of the equation X ′′ + λX = 0 is

X(x) =

 c1 cos
√
λx+ c2 sin

√
λx, λ > 0,

c1x+ c2, λ = 0,

c1e
√
−λx + c2e

√
−λx, λ < 0.

Considering the boundary values X ′(0) = X ′(L) = 0, it is easy to check that c1, c2 are
not both zero only when

• Case 1:

λ =
(nπ
L

)2
, n = 1, 2, 3, ...

and the corresponding nonzero solutions are, up to multiplication by a constant,

Xn(x) = cos
nπx

L
.

On the other hand, for each value of n, we can choose

Tn(t) = e−λα
2t = e−

α2n2π2

L2 t.

• Case 2:
λ = 0,

and the solutions X(x) are, up to multiplication by a constant,

X0(x) =
1

2
.

In this case, we can choose
T0(t) = 1.

Therefore, the boundary value problem

(V)

{
α2uxx = ut, 0 < x < L, t > 0,
ux(0, t) = 0, ux(L, t) = 0, t > 0

has solutions

u0(x, t) = X0(x)T0(t) =
1

2
,

and

un(x, t) = Xn(x)Tn(t) = e−
α2n2π2

L2 t cos
nπx

L
, n = 1, 2, 3, ...

2.3. Initial Value. Again, by the linearity of the equation, the principle of superposition
tells us that

u(x, t) =
∞∑
m=0

amum(x, t)

is a solution of the boundary value problem (V) for any an, as long as the limit of the
sum exists.

Furthermore, considering the initial condition, we need

u(x, 0) =
∞∑
m=0

amum(x, 0) =
a0
2

+
∞∑
n=1

an cos
nπx

L
= f(x).
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In other words, an are the coefficients in the expansion of f(x) as a cosine series. There-
fore,

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx, m = 0, 1, 2, 3, ...

and, formally,

u(x, t) =
∞∑
m=0

amum(x, t) =
a0
2

+
∞∑
n=1

ane
−α

2n2π2

L2 t cos
nπx

L

is the solution of the initial-boundary value problem (IV).


