
LECTURE 2: SEPARABLE EQUATIONS, EXISTENCE AND
UNIQUENESS THEOREMS

1. Separable Equations

Last time we learned how to solve first order linear ordinary differential equations.
Now we attempt to climb up the ladder of the classification of equations a bit, by re-
moving the requirement that the equations are linear.

Recall that a first order ODE, by definition, can always be written in the form:

f(x, y,
dy

dx
) = 0,

where the function f(x, y, dy
dx

) may not be linear in y, dy
dx

. Of course, one could easily
come up with a list: (dy

dx

)2

− 5y + 4x = 0,

sin
dy

dx
+ x− 2 = 0,(dy

dx

)5

+ y
dy

dx
+ ln

dy

dx
+ y = 0,

dy

dx
− exy = 0,

dy

dx
− x2 + 1

sin y + 2
= 0.

In this list, observe that the first two equations are non-linear in dy
dx

, but we are lucky to

be able to solve the equations algebraically for dy
dx

. For example, the first equation above
is equivalent to

dy

dx
= ±(5y − 4x)

1
2 ,

and the second equation is equivalent to

dy

dx
= sin−1(2− x).

Unfortunately, you will find it hard to apply the same argument to the third equation
above. But, ideally, let us restrict to equations of the form

dy

dx
= g(x, y),

for now.
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Returning to the list and focusing on the last equation, observe that this equation is
just

(sin y + 2)
dy

dx
= x2 − 1.

The left hand side of this equality reminds us of the chain rule,

d

dx
f(y(x)) =

d

dy
f(y)

dy

dx
.

In our case, it is evident that f(y) = − cos y+2y+C for some constant C. On the other
hand, note that the right hand side is

x2 − 1 =
d

dx
(
1

3
x3 − x+D),

for some constant D. So the original equation can be written as

d

dx
(− cos y + 2y + C) =

d

dx
(
1

3
x3 − x+D),

that is,
d

dx
(
1

3
x3 − x+ cos y − 2y +D − C) = 0.

It follows that
1

3
x3 − x+ cos y − 2y +D − C = E,

for arbitrary constants C,D,E. Grouping the constants together and call it C, we have

1

3
x3 − x+ cos y − 2y + C = 0.

Two remarks.
First, the expression we obtained here is not in the form y = y(x), but an equation

(non-differential) relating x, y. Fixing C, this relation is represented by a piece of curve
in the x-y plane. Be careful that sometimes a curve in the x-y plane can not be viewed
as the graph of a function y = y(x) (think about the circles). Again, C is determined by
initial values (i.e., a point in the x-y plane) of the equation. You may be excited that
we have ways to “fill” the plane with such curves. For example, the plane is filled by
circles centered at the origin of different radii, and this is characterized by the differential
equation

x+ y
dy

dx
= 0.

Second, the method above should work for any equations of the form

p(x) + q(y)
dy

dx
= 0,

as long as you are able to find the integrals of p and q. Equations of this form are called
separable, since one could view them as

p(x)dx = −q(y)dy,

where the variables are separated to each side of the equation, so that the both sides can
be integrated independently.
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Example. There are cases in which the equation does not appear separable, but becomes
separable after a change of variables. For example, consider the equation

dy

dx
=
x2 + y2

xy
.

If we let z = y
x
, then

dz

dx
=

1

x

dy

dx
− y

x2

=
1

x

dy

dx
− z

x
,

and
x2 + y2

xy
=
x

y
+
y

x
=

1

z
+ z.

Now the the function z satisfies

x
dz

dx
+ z =

dy

dx
=

1

z
+ z,

that is,

−1

x
+ z

dz

dx
= 0,

which is separable. More discussion on this example can be found in Ex. 30, Sec. 2.2.

2. Existence and Uniqueness

Going back to the list in the previous section, we see that the second equation does
not make sense if our initial condition is set outside of the region {1 < x < 3}. Hence,
before starting solving any equation, there is the issue of existence of solutions, given
certain initial condition. You might think, as long as the initial condition is chosen so
that the equation itself makes sense, then solution exists. Consider the equation:

y
dy

dx
= −x.

Remember that this equation characterizes the circles in the plane with radius R ≥ 0.
If we set (x0, y0) = (0, 0) as the initial condition, evidently, there is no solution curve
extending this initial value.

Apart from existence, a question to ask along with it is: If solutions exist for a given
initial condition, are they unique? Again, the question is not trivial because of examples
such as this:

dy

dt
= y1/3.

If we solve using the separation of variables, we’ll obtain y = ±(2
3
t+ C)

3
2 wherever it is

defined. If we set the initial condition to be y(0) = 0, then C = 0 and y = ±(2
3
t)

3
2 . This

is already two distinct solutions! Moreover, by speculation, you may notice that there is
another solution sharing the same initial condition, that is, y = 0. It turns out that the
source of this non-uniqueness lies in the fact that y1/3 has an infinite slope at y = 0.

Theorem(Existence and Uniqueness). For the first order initial value problem

dy

dx
= g(x, y), y(x0) = y0,
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if g(x, y) and ∂
∂y
g(x, y) are both continuous in some rectangle (a, b) × (c, d) containing

the point (x0, y0), then the initial value problem has a local solution, i.e., there exists
some open interval (x0 − ε, x0 + ε) ⊂ (a, b) on which the solution to the initial value
problem exists and is unique.

The Existence and Uniqueness theorem is useful in helping us determine the intervals
on which solutions exist.

Example. Consider the following equation:

dy

dx
=

1

1− y
.

Because 1
1−y and d

dy
1

1−y are continuous except at y = 1, then the equation has unique

solution near the initial values y(x0) = y0 6= 1.

Note that the theorem only guarantees the existence of solution nearby the initial values,
and one cannot expect the solution to be defined for all x.

Example. Consider the equation

dy

dt
= 1 + y2.

We could see that both 1 + y2 and d
dy

(1 + y2) = 2y are continuous functions. Hence,

for all initial values y(x0) = y0, solution exists. In fact, we could solve the equation by
separation of variables, and it gives y(x) = tan(x + C). Clearly, once C is determined
by initial values, say, C = 0 for example, the solution only exists within the interval
(kπ − π

2
, kπ + π

2
) which contains x0.

Questions. (1) For the differential equation whose solution curves are pieces of cir-
cles (see previous section), we see that it can be rewritten as

dy

dx
= −x

y
.

What does the existence and uniqueness theorem tell us if we set initial values (x0, y0)(y0 6=
0). To what extent could we extend an interval on which solution exists?

(2) For the differential equation
dy

dx
= y1/3,

we have seen that solutions are not unique given the initial condition y(0) = 0. By the
Existence and Uniqueness theorem, we know that a unique solution locally exists if we
set the initial condition to be y(0) = y0 6= 0. This time, to what extent can we extend
the interval containing x0 so that the solution remains unique?


