
LECTURE 15: IMPULSE FUNCTIONS, CONVOLUTION INTEGRALS

We are still in the realm of constant coefficient ODEs. This time, we study two more
types of input functions: (1) impulse functions; (2) functions that are expressed as a
product.

1. The Impulse Function

Imagine a mass being placed at the origin and the mass has unit weight and takes
zero space. In doing this, you’ve come up with what’s called the impulse function or the
Dirac δ-function. Formally, it is defined as

δ(t) = 0, t 6= 0,∫ ∞
−∞

δ(t)dt = 1.

Note that the δ-function is not a function in the traditional sense, since its value at t = 0
is not defined. However, it turned out that various operations on regular functions can
also be applied to this δ-function to obtain interesting results.

For example, by the definition of the δ-function, we have∫ t

−∞
δ(τ)dτ =

{
0, t < 0,
1, t ≥ 0.

To see this, note that δ(τ) = 0 for all τ < 0 and that δ(τ) = 0 for all τ > 0. In particular,
for t ≥ 0, ∫ t

−∞
δ(τ)dτ =

∫ ∞
−∞

δ(τ)dτ −
∫
τ>t

δ(τ)dτ = 1− 0 = 1.

This seems to be telling us that the anti-derivative of the function δ(t) is the step
function u0(t), in other words, u′0(t) = δ(t). Right now, you may be exited, seeing
that we might simply use the derivative property to calculate L{δ(t)}. However, this
would not work properly, since, remember, we require the continuity of f(t) in order for
L{f ′(t)} = −f(0) + sL{f(t)} to hold.

Exercise. Try calculating L{δ(t)} as L{u′0(t)}. Compare this with the value of L{δ(t)}
which we’ll obtain later in this lecture.

Besides the definition, another way to characterize the impulse function is viewing it
as the limit of a sequence of functions:

dτ (t) =

{
1
2τ
, −τ ≤ t ≤ τ,

0, elsewhere,

as τ → 0+. These functions are called the top-hat functions because of the shapes of
their graphs. Note that the integral over the real line of these functions are always equal
to 1, and for any t 6= 0, as τ gets small enough, we would have dτ (t) = 0. Now, it is easy
to believe that the limit “function” is just δ(t).
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2. L{δ(t)}

An important property of the impulse function δ(t) is the following.

Proposition. If f(t) is continuous in a neighborhood of t = 0, then∫ ∞
−∞

δ(t)f(t)dt = f(0).

An informal way to see this is that we could view f(t) as an “amplifier”. Since δ(t)
represents a mass of unit weight at the origin, it is amplified to a mass of weight f(0).
Therefore, the integral has to be f(0).

Another approach is by calculating the integral∫ ∞
−∞

dτ (t)f(t)dt =
1

2τ

∫ τ

−τ
f(t)dt.

By the continuity of f(t) and the mean value theorem, there exists a t∗ ∈ [−τ, τ ] such
that 1

2τ

∫ τ
−τ f(t)dt = f(t∗). Now, let τ → 0+. Correspondingly, t∗ → 0. Therefore,

passing to the limit, we have

lim
τ→0+

∫ ∞
−∞

dτ (t)f(t)dt = lim
t∗→0

f(t∗) = f(0).

You may notice, still we need that the limit and the integral to be interchangeable in
order to arrive at ∫ ∞

−∞
δ(t)f(t)dt = f(0).

We are not getting into the details here. For now, just be aware that a gap exists in our
argument.

Starting from the proposition, we could get the following corollaries:

Corollary 1. If f(t) is continuous in a neighborhood of t = t0, then∫ ∞
−∞

δ(t− t0)f(t)dt = f(t0).

The proof is simply by a change of variable: ξ = t − t0 and then using the proposition
above.

Corollary 2. For t0 > 0, we have

L{δ(t− t0)} = e−st0 .

Proof. Since t0 > 0, we have δ(t−t0) = 0 for t ≤ 0. Further more, since e−st is continuous
in t, by corollary 1,

L{δ(t− t0)} =

∫ ∞
0

δ(t− t0)e−stdt =

∫ ∞
−∞

δ(t− t0)e−stdt = e−st0 .

Finally, for the consistency of applying the properties of the Laplace transform, we set

L{δ(t)} = 1,
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according to the limit

lim
t0→0+

L{δ(t− t0)} = lim
t0→0+

e−st0 = 1.

3. Initial Value Problems with Impulse Forcing Functions

Given the Laplace transform of the impulse function, no doubt that we could solve
differential equations with impulse forcing functions. We illustrate this with an example.

Example. Consider the initial value problem

2y′′ + y′ + 2y = δ(t− 5), y(0) = y′(0) = 0.

Routinely, apply the Laplace transform to both sides of this equation, obtaining

(2s2 + s+ 2)Y (s) = e−5s.

Therefore,

Y (s) = e−5s
1

2s2 + s+ 2
.

Again, if h(t) satisfies

L{h(t)} =
1

2s2 + s+ 2
,

then, by the second shift theorem,

y(t) = u5(t)h(t− 5).

Now it suffices to find h(t). In fact,

1

2s2 + s+ 2
=

1

2

1

(s+ 1
4
)2 + 15

16

=
2√
15

√
15/4

(s+ 1
4
)2 + 15

16

.

It is clear that

h(t) = L−1{(2s2 + s+ 2)−1} =
2√
15
e−

1
4
t sin

√
15

4
t.

Conclusion,

y(t) = u5(t)
2√
15
e−

1
4
(t−5) sin

√
15

4
(t− 5).

Remark. Looking closer at the example, we could observe the following:

• Since the initial values are zero, the Laplace transform of the left hand side is
simply the characteristic polynomial of the equation.
• The function h(t) only depends on the left hand side of the equation, in other

words, the characteristic polynomial of the equation. This determines qualita-
tively whether the solution is periodic/damping/oscilatting/diverging.
• The solution y(t) is a shift of h(t), depending on what the impulse function looks

like.

In light of this, consider the equation

y′′ + ay′ + by = δ(t− t0), y(0) = y′(0) = 0, t0 > 0

in general. We have the characteristic polynomial

p(s) = s2 + as+ b = (s− r1)(s− r2),
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where r1, r2 are roots. Three possibilities:

• r1 6= r2, real. In this case, p(s)−1 must be of the form

A

s− r1
+

B

s− r2
for some constants A,B. Thus, h(t) is the linear combination of the exponential
functions er1 , er2 and y(t) is the result of h(t) being shifted to the right by t0.
• r1 = r2. In this case,

p(s)−1 =
1

(s− r1)2
.

Thus, h(t) is the function ter1t and y(t) = ut0(t)(t− t0)er1(t−t0).
• r1, r2 = λ± iµ, µ 6= 0. In this case,

p(s)−1 =
1

µ

µ

(s− λ)2 + µ2
.

Thus,

h(t) = L−1{p(s)−1} =
1

µ
eλt sinµt,

and

y(t) = ut0(t)h(t− t0) = ut0(t)
1

µ
eλ(t−t0) sinµ(t− t0).

This completely characterizes the solution of initial value problems of the type

y′′ + ay′ + by = δ(t− t0), y(0) = y′(0) = 0, t0 > 0.

4. Convolution Integrals

The definition of the convolution of two functions is straightforward.
Definition. Given f(t), g(t) defined for t ≥ 0, the convolution of f and g is defined as

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ.

Properties.

• Commutative law: f ∗ g = g ∗ f .
Proof. By a change of variable s = t− τ , we have

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ = −
∫ 0

t

f(s)g(t− s)ds

=

∫ t

0

f(s)g(t− s)ds = (f ∗ g)(t).

• Distributive law: f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2.
Proof. This follows immediately from the linearity of the integral.
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• Associative law: (f ∗ g) ∗ h = f ∗ (g ∗ h).
Proof. By definition,

((f ∗ g) ∗ h)(t) =

∫ t

0

(f ∗ g)(t− s)h(s)ds

=

∫ t

0

(∫ t−s

0

f(t− s− τ)g(τ)dτ
)
h(s)ds

=

∫ t

0

∫ t−s

0

f(t− s− τ)g(τ)h(s)dτds.

On the other hand,

(f ∗ (g ∗ h))(t) =

∫ t

0

f(t− s)(g ∗ h)(s)ds

=

∫ t

0

f(t− s)
∫ s

0

g(s− τ)h(τ)dτds

=

∫ t

0

∫ s

0

f(t− s)g(s− τ)h(τ)dτds

(s̃ = τ, τ̃ = s− τ) =

∫ t

0

∫ t−s̃

0

f(t− τ̃ − s̃)g(τ̃)h(s̃)dτ̃ds̃.

Clearly, (f ∗ g) ∗ h = f ∗ (g ∗ h).

The following theorem tells us that the inverse Laplace of a product of functions is equal
to the convolution of the respective inverse Laplace transforms of those functions.

Theorem. If L−1{F (s)} = f(t) and L−1{G(s)} = g(t), where F (s), G(s) are defined
for s > α, then

L−1{F (s)G(s)} = (f ∗ g)(t).

Proof. It suffices to show that∫ ∞
0

(f ∗ g)(t)e−stdt =

∫ ∞
0

f(t)e−stdt

∫ ∞
0

g(t)e−stdt.

The right hand side of this equality can be rewritten as∫ ∞
0

∫ ∞
0

f(t)g(τ)e−s(t+τ)dτdt.

Now, let x = t+ τ be a substitute for τ with t fixed, the expression above is just∫ ∞
0

∫ ∞
t

f(t)g(x− t)e−sxdxdt =

∫ ∞
0

(∫ t

0

f(t)g(x− t)dt
)
e−sxdx

=

∫ ∞
0

(g ∗ f)(t)e−sxdx,

where the first equality comes from reversing the order of integration in the region
{t ≥ 0, x ≥ t} ⊂ R2. Finally, note that g ∗ f = f ∗ g. This completes the proof.
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Example. In a previous lecture, it took us a fair amount of effort to find L−1{(1+s2)−2}.
Now, by the theorem, we know immediately that

L−1{(1 + s2)−2} = L−1{(1 + s2)−1} ∗ L−1{(1 + s2)−1} = sin t ∗ sin t

=

∫ t

0

sin(t− τ) sin(τ)dτ

=

∫ t

0

1

2
[cos(t− 2τ)− cos t]dτ

=
1

4
[− sin(t− 2τ)− 2τ cos t]

∣∣∣t
τ=0

=
1

2
(sin t− t cos t).

Exercise. Consider F (s) as F (s) · 1 and note that L−1{1} = δ(t). Now apply the convo-
lution theorem to finding L−1{F (s) · 1}, what do you get?
Ans. f(t) = δ(t) ∗ f(t). This means, the impulse function is playing the role of a “mul-
tiplicative identity” in the sense of convolution.

Example. Using convolution, solve the initial value problem

y′′ + 2y′ + 2y = g(t), y(0) = y′(0) = 0.

Applying L on both sides of this equation gives

(s2 + 2s+ 2)Y (s) = G(s).

Thus,

Y (s) =
G(s)

s2 + 2s+ 2
.

Therefore,

y(t) = g(t) ∗ L−1{(s2 + 2s+ 2)−1} = G(s) ∗ L−1{((s+ 1)2 + 1)−1}
= g(t) ∗ (e−t sin t).

Note that we obtained e−t sin t only from the left hand side, i.e., the “system”. And
the output is simply the convolution of the input g(t) and a function intrinsic to the
system. Of course, this kind of result is neither restricted to this particular set of
constant coefficients, nor to this particular set of initial values. As an exercise, you may
try to convince yourself of this. And the result should generalize the remark at the end
of section 3.


