
LECTURE 11: REGULAR SINGULAR POINTS, EULER EQUATIONS

1. Regular Singular Points

Until now, we have been focusing on second order linear ODEs of the form y′′+p(x)y′+
q(x)y = g(x). Particularly, we learned that the series solutions of this type of equations
are valid and unique on the common intervals where p(x), q(x), g(x) are analytic. In this
lecture, we are interested in solving the equation near an x0 where one or more of p, q, g
is not analytic.

Definition 1. (Ordinary/Singular Points) A point x = x0 is an ordinary point of
the second order linear ordinary differential equation

y′′ + p(x)y′ + q(x) = g(x)

if p(x), q(x), g(x) are all analytic at the point x0. Points that are not ordinary are called
singular points of the differential equation.

Furthermore, the singularities of second order linear ODEs have been divided into two
kinds, regular singularities and irregular singularities:

Definition 2. (Regular/Irregular Singularities) If x = x0 is a singular point of the
equation

y′′ + p(x)y′ + q(x) = g(x)

and (x− x0)p(x), (x− x0)2q(x) are analytic at x0, then x0 is called a regular singularity.
Singularities that are not regular are called irregular singularities.

As we can see, to test whether a point is ordinary or singular, one has to test whether it
is a point at which certain functions are analytic. It turns out there are many ways for
functions to be non-analytic at a point, to name a few:

(1) The function is not defined at x = x0. Example: f(x) = (x− x0)−1.
(2) The function is defined but not continuous at x = x0. Example:

f(x) =

{
1, x ≥ x0
0, x < x0

.

(3) The function is continuous but not smooth at x = x0. Note: A function is said to
be smooth at x0 if all its derivatives at x0 exist. Example:

f(x) =

{
(x− x0)2, x ≥ x0
−(x− x0)2, x < x0

,

where the second derivative of f(x) at x = x0 does not exist.
(4) The function is smooth at x = x0, but its Taylor expansion at x0 does not converge
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to the function itself, i.e., the Taylor expansion at x0 is not valid. Example:

f(x) =

{
e−

1
x2 , x 6= 0

0, x = 0

This function is smooth, but all its derivatives at x0 = 0 are zero. In other words, the
Taylor expansion of f(x) at x0 is zero. Clearly, this Taylor expansion is not valid.

Now we explain why there might be a problem of finding series solutions about a singular
point. Consider the equation:

y′′ +
1

x2
y′ − y = 0.

To solve it near x0 = 0, we first multiply it by x2 to make the series methods more
applicable:

x2y′′ + y′ − x2y = 0.

Let us first try the successive differentiation method: We are expecting a solution of the
form

y(x) = y(0) + y′(0)x+
1

2!
y′′(0)x2 + ...,

but one notices immediately that it is impossible to calculate y′′(0) using the equation.

What about the undetermined coefficient method then? We let

y(x) = a0 + a1x+ a2x
2 + a3x

3...

and plug this in the equation, getting:

x2(2a2 + 6a3x+ ...) + (a1 + 2a2x+ 3a3x
2 + ...)− x2(a0 + a1x+ a2x

2 + ...) = 0.

Grouping the powers of x, we get:

a1 = 0,

2a2 = 0,

2a2 − a0 + 3a3 = 0,

...

Obviously, this forces y′(0) = 0. And we are not sure of the convergence of the this
series, because 1

x2 is not analytic at x = 0.

It seems that one could say little about solutions near a singular point, but it turns
out that there is a well-established method, called method of Frobenius, which gives
valid (Frobenius) series solutions in a neighborhood of regular singularities. We are not
going to introduce the Frobenius method in this course, according to the schedule. In-
stead, we are going to consider a special type of equations with a regular singularity at
x0 = 0, called the Euler equations. Hopefully, from this we can get a hint of why the
regular singularities are “nice” singularities to have.
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2. Euler Equations

Second order linear ODEs of the form

x2y′′ + αxy′ + βy = 0,

where α, β are real constants are called the Euler Equations. From our previous discus-
sion, these equations have a regular singularity at x0 = 0 as long as α, β are not both zero.

What about the solutions? Let us check whether there is any solution that is in the
form

y(x) = xr,

for some constant r.
Remark: In fact, this is not the first time that we attempt to solve an equation by
asking “Are there solutions in the form...?” Think about the second order constant co-
efficient linear ODEs. There, we checked solutions in the form erx, and it worked!

Now, plugging y = xr in the equation, we obtain

x2(xr)′′ + αx(xr)′ + βxr = 0,

that is,
r(r − 1)xr + αrxr + βxr = (r2 + (α− 1)r + β)xr = 0.

This reduces to
r2 + (α− 1)r + β = 0,

which is a quadratic equation in r. Let r1, r2 be the roots of P (r) = r2 + (α − 1)r + β.
Depending on the values of α, β, there are three possibilities:
(1) r1, r2 are real and distinct;
(2) r1, r2 are repeated (real) roots;
(3) r1, r2 are complex conjugates of each other.

Case (1). We obtain two solutions

y1(x) = xr1 , y2(x) = xr2

of the original equation. Since r1 6= r2, it is easy to check the Wronskian and conclude
that these two solutions are linearly independent. Hence the general solution of the
equation is

y(x) = c1x
r1 + c2x

r2 .

However, you may notice a problem here: What if, for instance, r1 = 1
2
? The solution is

not defined for x < 0. For now, we confine to the domain x > 0 and leave the x < 0 case
to the end of this section. Thus, the current result of the general solution should be

y(x) = c1x
r1 + c2x

r2 , x > 0.

Case (2). Here, it is instructive to recall a homework exercise we did for the second
order homogeneous CCLDEs: to obtain a second solution in the case of repeated roots,
we took the difference quotient

er1x − er2x

r1 − r2
,

and took the limit r1 → r2. By using the L’hôpital’s rule, we obtained the solution
xer2x. You may realize, what taking the difference quotient and the limit is doing is
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essentially taking the derivative of erx with respect to r and evaluate it at r = r2. To
work along this idea, let L denote the linear operator such that the equation can be
written as L[y] = 0. Then L[erx] = Q(r)erx, where Q(r) is the characteristic polynomial.
Since Q(r) has repeated roots r1 = r2, it must be in the form c(r− r2)2 for some nonzero
constant c. Therefore,

∂

∂r
L[erx] =

∂

∂r
(c(r − r2)2erx) = 2c(r − r2)erx + c(r − r2)2xerx.

Clearly,
∂

∂r
L[erx]

∣∣∣
r=r2

= 0.

On the other hand,
∂

∂r
L[erx] = L[

∂

∂r
erx].

Exercise. Show that if L = D2 + p(x)D + q(x), where D = d
dx

, then( ∂
∂r
L
)
f(x, r) = L

( ∂
∂r
f(x, r)

)
,

for any differentiable function f(x, r).

Therefore,

0 =
∂

∂r
L[erx]

∣∣∣
r=r2

= L[
∂

∂r
erx
∣∣∣
r=r2

] = L[xer2x],

and y(x) = xer2x is a solution of the equation L[y] = 0.

Now, back to the Euler equations, let

L̃ = x2D2 + αxD + β.

Again, by the exercise above, we have( ∂
∂r
L̃
)
xr = L̃

( ∂
∂r
xr
)

= L̃[xr lnx].

On the other hand, by the assumption that r1 = r2,

L̃[xr] = (r − r1)(r − r2)xr = (r − r1)2xr.
Easily, one could check( ∂

∂r
L̃
)∣∣∣

r=r1
xr =

∂

∂r

∣∣∣
r=r1

((r − r1)2xr) = 0.

Hence,
L̃[xr1 lnx] = 0,

and y(x) = xr1 lnx is a solution.
Again, one could use the Wronskian to check that xr1 and xr1 lnx are linearly inde-

pendent. Therefore, the general solution is

y(x) = (c1 + c2 lnx)xr1 , x > 0,

where we restrict to x > 0 because of lnx.

Case (3). P (r) has complex roots a+ bi and a− bi. Formally, the solutions are

y1(x) = xa+bi, y2(x) = xa−bi.
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Two problems: One, how to make sense of xr when r is a complex number? Two, y1(x)
and y2(x) may be complex valued.

Definition: xr is defined as er lnx for r ∈ C.

Using this definition, we have

y1(x) = e(a+bi) lnx = ea lnx(cos(b lnx) + i sin(b lnx)),

y2(x) = e(a−bi) lnx = ea lnx(cos(b lnx)− i sin(b lnx)).

Taking real and imaginary parts, we could obtain two real solutions:

ỹ1(x) = ea lnx cos(b lnx), ỹ2(x) = ea lnx sin(b lnx).

Again, one could check linear independence using the Wronskian. Thus, the general
solution is

y(x) = ea lnx(c1 cos(b lnx) + c2 sin(b lnx))

= xa(c1 cos(b lnx) + c2 sin(b lnx)), x > 0.

What about x < 0? Consider the change of variable x = −t. We have d
dt
y = − d

dx
y

and d2

dt2
y = d2

dx2y. The Euler equation becomes

x2
d2

dx2
y + αx

d

dx
y + βy = t2

d2

dt2
y + αt

d

dt
y + βy = 0.

Hence, to solve for the Euler equation in x < 0, it suffices to solve

t2
d2

dt2
y + αt

d

dt
y + βy = 0

for t > 0, which is also an Euler equation. Finally, substitute back t = −x to obtain
solutions for x < 0.

Therefore, we conclude that the general solution of an Euler equation about x = 0
is

y(x) =

 c1|x|r1 + c2|x|r2 , r1 6= r2 ∈ R
(c1 + c2 ln |x|)|x|r1 , r1 = r2

|x|a(c1 cos(b ln |x|) + c2 sin(b ln |x|)), r1, r2 = a± bi
, x 6= 0.


