
LECTURE 1: INTRODUCTION, LINEAR EQUATIONS,
INTEGRATING FACTORS

1. Introduction, Linear Equations

The subject of this course is differential equations, i.e., equations that involve the
derivatives of the unknowns. As you may recall from calculus, perhaps one of the
simplest example is the equation modeling population growth of organisms (with no
environmental capacity constraint):

dp

dt
= rp,

where p stands for the population and r is some constant. Note that the derivative in
this equation is with respect to the time variable t. It is a convention to use ṗ, p̈... to
denote the first, second,... derivatives of p with respect to t. So our equation above can
also be written as

ṗ = rp.

If you remember Math216, here is an equation characterizing the motion of a (damped)
harmonic oscillator:

m
d2x

dt2
+ b

dx

dt
+ kx = f(t),

where m stands for mass, b for friction, k for Hooke’s constant, and f(t) for the external
force/input. When f(t) ≡ 0, the equation is called homogeneous. We studied this type
of equations in Math216.

It is an easy notice that the two equations above share the property that they both
involve derivatives with respect to only one free variable, in this case, t. Differential
equations having this property are called ordinary differential equations (ODEs). Fur-
ther comparing these equations, we observe that one involves at most the first derivative
while the other involves at most the second derivative of t. The number of the highest
derivative taken in a differential equation is called the order of the differential equation.

Consider the equation modeling the heat transfer in a line:

u̇ =
∂2u

∂x2
.

This equation differs from the previous two in that it involves partial derivatives of
the unknown function u = u(x, t). Equations that involve partial derivatives are called
partial differential equations (PDEs). Note that the definition above of the order of an
equation extends to the category of partial differential equations. For example, the order
of the heat equation above is 2, and the order of the equation

∂5u

∂x2∂y2∂z
= u
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is 5.

If we look at the four equations given above, a less-so-obvious feature that they share
is that these equations are linear, in the sense that if we rewrite them in the form

f(t, x, u,
∂u

∂t
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂x2
,
∂2u

∂x∂t
, ...) = 0,

where I’ve used u to denote all the unknown functions, f , viewed as a function of all
the possible derivatives of u (including u itself), is a linear function. For example, in the
population model, we could set

f(t, p, ṗ) = ṗ− rp,

which is a linear function in p and ṗ. In the Heat equation model, we could set

f(t, x, u, u̇,
∂u

∂x
, ü,

∂2u

∂x2
,
∂2u

∂x∂t
) = u̇− ∂2u

∂x2
,

which is also linear. Symbolically, the expression

f(t, x, p, q, r) = (t+ x2)p+ (t2 sinx)q +
(1

t
lnx
)
r,

is linear in p, q, r but not linear in p, q, r, x nor in p, q, r, t. Differential equations that are
not linear are called nonlinear.

Our course treats mainly the linear equations, for which the theory of analysis is well-
established. However, one should note that, in many instances of modeling real life,
linear equations are too good to be true. For instance, the population model above has
exponential solutions, which might be the case when the population is small compared
with the resource in the environment required for reproduction. However, when p gets
large, one has to consider what’s called the environmental capacity. In light of this, one
could adjust the equation to be

ṗ = p(1− p

R
),

where R is the environmental capacity (Do you see why?). By the definition, this equa-
tion is clearly nonlinear. In fact, despite the hardness of finding explicit formulas for
solutions of nonlinear equations, we could for this equation. As an exercise, you could
choose R = 1, divide the the equation by its right hand side, and try to integrate the
expressions you get.

At this point, hopefully you are convinced that there can be innumerably many dif-
ferential equations out there, and we cannot look at them and try to solve one by one.
Instead, just like what we observed in the equations above, we ask the question, can we
classify the equations and develop theories to solve certain classes of equations? More
subtly, given a particular equation, to what extent and how could we zoom out from
it, so that a theory can be established? So far, we could guess, maybe the order of an
equation matters, maybe homogeneity, linear or nonlinear, number of free variables, or
maybe a combination of these features. This is exactly what we are going to do next.
We start with the simplest possible of the combinations of the “features”: linear first
order ordinary differential equations.
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2. Integrating Factors

In this section, we introduce the method of integrating factors which solves linear first
order ordinary differential equations. First of all, what do these equations look like?
Let’s think. We have “first order” and “ordinary”, thus the equation could only possibly
involve x, y, dy

dx
and can be written as

f(x, y,
dy

dx
) = 0.

Furthermore, we have “linear”, which renders f in the form

f(x, y,
dy

dx
) = s(x)

dy

dx
+ q(x)y + r(x).

Thus our equation always takes the form

s(x)
dy

dx
+ q(x)y + r(x) = 0.

In the context, we assume p(x) to be nonzero in our domain of interest and the equation
simplifies to

dy

dx
+ p(x)y = g(x),

for some smooth functions p(x) and g(x).

Now comes the task of solving these equations. In a particular instance when p(x) ≡ 0,
the equation is simply

dy

dx
= g(x),

and the solution is, as you may recall from calculus,

y =

∫
g(x)dx+ C.

What if p(x) 6= 0? The method of integrating factors suggests the following ap-
proach: If there exists a function µ(x) so that whenever y(x) solves

dy

dx
+ p(x)y = g(x),

z(x) = µ(x)y(x) solves some equation

dz

dx
= g̃(x).

since the latter equation is readily solvable by integration, then dividing its solution by
µ(x) yields y(x). Such a µ(x) is called an integrating factor.

Looks like a promising idea? Question is, can we always find µ(x)? Note that our goal
is to find a function µ, such that in the equation that z = µy satisfies, the coefficient of
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z equals to zero. Written in formulas, we have that z = µy satisfies

dz

dx
=

d

dx
(µy)

=
dµ

dx
y + µ

dy

dx

=
dµ

dx
y + µg(x)− µp(x)y

=
(dµ
dx
− µp(x)

)
y + µg(x)

=
1

µ

(dµ
dx
− µp(x)

)
z + µg(x).

So if we set
dµ

dx
− µp(x) = 0,

solving this equation gives

µ(x) = e
∫
p(t)dt,

then
dz

dx
= µ(x)g(x),

and immediately

z(x) =

∫
µ(x)g(x)dx+ C =

∫
e
∫
p(x)dxg(x)dx+ C.

Finally,

y(x) =
z(x)

µ(x)
= e−

∫
p(x)dx

(∫
e
∫
p(x)dxg(x)dx+ C

)
.

Are we done? What about the unknown parameter C? You may recall that such C can
be determined by initial conditions, such as y(3) = 4. The theory completes its job here.
Ready for examples.

Example. Solve the initial value problem

y′ − y = 1 + 2 cosx, y(0) = y0.

How would you set the values of y0 so that the solution remains finite when t→∞?

Solution. Corresponding to the method of integrating factors, here p(x) = −1 and
g(x) = 1 + 2 cosx. Thus the solution is

y(x) = ex(

∫
e−x(1 + 2 cosx)dx+ C)

= ex(−e−x + e−x(sinx− cosx) + C)

= −1 + (sin x− cosx) + Cex.

For the initial condition y(0) = y0, we know that C = y0+2. Hence, the solution remains
finite as t→∞ if and only if y0 = −2.
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3. Direction/Vector Fields

Here, we briefly use the equation

ṗ = p(1− p)
as an example to explain the direction field (aka. slope field) associated to an ordinary
differential equation and why it may be helpful in understanding the solutions. First
notice that in the t− p plane, a solution to the equation above is (a section of) a curve
parametrized as (t, p(t)). By the differential equation, we see that the tangent segments
at each point along this curve is parallel to the vector (1, ṗ) = (1, p(t)(1 − p(t))). In
other words, if the t − p plane is equipped with the vectors (1, p(1 − p)) at each point,
then a solution curve is simply one that is everywhere tangent to the vectors. See the
diagram below:
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Vector Field of p′ = p (1 - p)

As you can see, this equation has two constant solutions p(t) = 0 and p(t) = 1, along
whose graph the vector fields are horizontal. Constant solutions such as these are called
equilibria of the differential system. In our case, p = 0 is called a stable equilibrium in
the sense that a small perturbation yields a solution which tends to p = 1 as t tends to
infinity. For a similar reason, you can see that the equilibrium p = 0 is unstable. Now,
do you see why, in this setting, R = 1 can be understood as the environmental capacity?


