
FINAL EXAM, MATH 353 SUMMER I 2015

9:00am-12:00pm, Thursday, June 25

I have neither given nor received any unauthorized help on this exam and I have con-
ducted myself within the guidelines of the Duke Community Standard.

Name: Signature:

Instructions: This exam contains 12 pages and 10 problems with a table of Laplace
transform at the end. You have 180 minutes to answer all the questions. You may
use a calculator or a review sheet, front and back, written in your own handwriting.
Throughout the exam, show your work with clear reasoning and calculation. If you are
using a theorem to draw some conclusions, quote the result. If you do not completely
solve a problem, explain what you understand about it. No collaboration on this exam
is allowed. Good luck !

Problems Points Grade

1 20

2 20

3 20

4 20

5 20

6 20

7 20

8 20

9 20

10 20

Total 200
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1. (20 points) Find the inverse Laplace transform f(t) = L−1{F (s)} of the following
functions:

(1) F (s) =
s− 2

s2 + 2s+ 10

Solution.
s− 2

s2 + 2s+ 10
=

s− 2

(s+ 1)2 + 9
=

s+ 1

(s+ 1)2 + 9
− 3

(s+ 1)2 + 9
.

Thus, by the first shift theorem,

f(t) = L−1{F (s)} = e−t(cos 3t− sin 3t).

(2) F (s) =
e−s

s3

Solution. Note that L{t2} = 2!
s3

, thus

L−1{s−3} =
1

2
t2.

By the second shift theorem, we have

f(t) =
1

2
u1(t)(t− 1)2.

(3) F (s) =
1

(s2 − 4)(s2 − 9)

Solution. Note that (by partial fractions)

1

(s2 − 4)(s2 − 9)
=

1

5

( 1

s2 − 9
− 1

s2 − 4

)
.

Therefore,

f(t) = − 1

10
sinh 2t+

1

15
sinh 3t.
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2. (20 points) Find the solution of the initial value problem

y′′ + 4y = 8 sinh(2t) + δ(t− 2π) y(0) = y′(0) = 0,

where δ(t) is the Dirac delta function and sinh(t) is the hyperbolic sine function.

Solution. Take the Laplace transform on both sides of the equation and note that the
initial values are zero. We obtain

(s2 + 4)Y (s) =
16

s2 − 4
+ e−2πs.

Thus,

Y (s) =
16

(s2 + 4)(s2 − 4)
+ e−2πs

1

s2 + 4

=
2

s2 − 4
− 2

s2 + 4
+

1

2
e−2πs

2

s2 + 4
.

Now, taking the inverse Laplace transform, we have

y(t) = sinh 2t− sin 2t+
1

2
u2π(t) sin 2(t− 2π)

= sinh 2t− sin 2t+
1

2
u2π(t) sin 2t.
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3. (20 points) Consider the first order ordinary differential equation

ex(x+ 1) + (yey − xex)dy
dx

= 0.

(1) Find an integrating factor g(y) which makes this equation exact.

Solution. The integrating factor g(y) should satisfy

∂[g(y)ex(x+ 1)]

∂y
=
∂[g(y)(yey − xex)]

∂x
,

which is just
g′(y)(ex(x+ 1)) = g(y)(−ex − xex).

Hence,
g′

g
= −1,

and we can choose
g(y) = e−y.

(2) Find the (implicit) solution of the differential equation above with y(0) = 1.

Solution. Multiplying the equation by e−y, we have

ex−y(x+ 1) + (y − xex−y)dy
dx

= 0.

Thus,

F (x, y) =

∫
ex−y(x+ 1)dx+ h(y)

= e−yxex + h(y).

Furthermore, we need

y − xex−y =
∂F

∂y
(x, y) = −e−yxex + h′(y).

It follows that
h′(y) = y,

and we can choose h(y) = 1
2
y2.

Therefore, the general solution is

xex−y +
1

2
y2 = C,

for some constant C. Using the given initial value, we have C = 1
2
.

We conclude that the solution of the initial value problem is

xex−y +
1

2
y2 =

1

2
.
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4. (20 points) Find the general solution of the equation

(x+ 1)y′′ − xy′ − y = 0, x > −1

given that y(x) = ex is a solution. Your final answer could involve an indefinite integral.

Solution. Use the method of Reduction of order: consider a solution of the form
v(x)y(x) = v(x)ex and find v(x). We have

(x+ 1)(v′′ex + 2v′ex + vex)− x(v′ex + vex)− vex = 0,

which is equivalent to
(x+ 1)v′′ + (x+ 2)v′ = 0.

Letting z = v′, we have
z′

z
= −x+ 2

x+ 1
= −1− 1

x+ 1
.

Hence,
ln |z| = −x− ln(x+ 1).

We can choose

z(x) =
e−x

x+ 1
,

and

v(x) =

∫
e−x

x+ 1
dx.

Therefore, the general solution of the equation is

y(x) = c1e
x + c2v(x)ex = ex

(
c1 + c2

∫
e−x

x+ 1
dx
)
.
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5. (20 points) Use the series method to solve the initial value problem

y′′ + 3xy′ + exy = 2x, y(0) = 1, y′(0) = −1.

You need only to calculate terms up to the fourth power of x.
Note: The Taylor expansion of ex at x = 0 is

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ...

Solution. Let
y(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + ...

We have

y′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + ...

y′′(x) = 2a2 + 6a3x+ 12a4x
2 + ...

Therefore, expanding all the functions in the equation in their Taylor series about
x = 0, we obtain

(2a2 + 6a3x+ 12a4x
2 + ...) + 3x(a1 + 2a2x+ 3a3x

2 + 4a4x
3 + ...)+

(1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ...)(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + ...) = 2x.

If we compare the coefficients of the terms 1, x, x2 on both sides of the equation, we
would obtain

2a2 + a0 = 0,

6a3 + 3a1 + a0 + a1 = 2,

12a4 + 6a2 + a2 + a1 +
1

2
a0 = 0.

Note that the initial values are just

a0 = 1, a1 = −1.

Therefore, from the above equalities,

a2 = −1

2
,

a3 =
2− 4a1 − a0

6
=

5

6
,

a4 =
−1

2
a0 − a1 − 7a2

12
=

1

3
.

Therefore, the series solution is

y(x) = 1− x− 1

2
x2 +

5

6
x3 +

1

3
x4 + ...
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6. (20 points) Show by calculation that the Fourier series for the function

f(x) = ex, −π ≤ x < π, f(x) = f(x+ 2π)

is

g(x) =
sinhπ

π

(
1 + 2

∞∑
n=1

(−1)n

1 + n2
(cosnx− n sinnx)

)
.

What is the value of g(π)? Now find the limit of the infinite series
∞∑
n=1

1

1 + n2
.

Solution. Note that the period is 2π. If we let g(x) = a0
2 +

∑∞
n=1(an cosnx+ b2 sinnx), then

a0 =
1

π

∫ π

−π
exdx =

1

π
ex
∣∣∣π
−π

=
2

π
sinhπ,

an =
1

π

∫ π

−π
ex cosnxdx,

bn =
1

π

∫ π

−π
ex sinnxdx,

Using integration by parts, we could evaluate∫
ex cosnxdx = ex cosnx+n

∫
ex sinnxdx,

∫
ex sinnxdx = ex sinnx−n

∫
ex sinnxdx.

If we let A =
∫ π
−π e

x cosnxdx, B =
∫ π
−π e

x sinnxdx, then the above equality tells us{
A = (eπ − e−π) cosnπ + nB,
B = −nA.

Therefore,

A =
2

1 + n2
cosnπ sinhπ =

2

1 + n2
(−1)n sinhπ,

B = −nA = (−n) 2

1 + n2
(−1)n sinhπ.

Plugging this in the expression of g(x) gives the Fourier expansion.

By the Fourier convergence theorem and the periodicity of f(x), we know that

g(π) =
1

2
(eπ

+
+ eπ

−
) =

1

2
(e−π + eπ) = coshπ.

On the other hand,

g(π) =
sinhπ

π

(
1 + 2

∞∑
n=1

(−1)n

1 + n2
(cosnπ − n sinnπ)

)
=

sinhπ

π

(
1 + 2

∞∑
n=1

1

1 + n2

)
.

Hence,
∞∑
n=1

1

1 + n2
=

1

2
(π cothπ − 1).
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7. (20 points) Consider the initial-boundary value problem: uxx = ut − sinx, 0 < x < π, t > 0
u(0, t) = u(π, t) = 0, t > 0
u(x, 0) = 3 sin 2x+ 6 sin 5x, 0 ≤ x ≤ π

(1) Find the steady state solution of this equation, i.e., a solution w(x, t) = w(x) (does
not depend on t) which satisfies the equation and the boundary values.

Solution. By the definition of steady state, we have that w(x) satisfies{
w′′(x) = − sinx, 0 < x < π,
w(0) = w(π) = 0.

It is easy to see (or by integrating twice) that

w(x) = sin x, 0 < x < π.

(2) Find the solution u(x, t) of the initial-boundary value problem.
Hint: Which initial-boundary value problem does v(x, t) = u(x, t)− w(x) satisfy?

Solution. By the linearity of the equation, v(x, t) = u(x, t)− w(x) satisfies the initial-
boundary value problem: vxx = vt, 0 < x < π, t > 0

v(0, t) = v(π, t) = 0, t > 0
v(x, 0) = − sinx+ 3 sin 2x+ 6 sin 5x, 0 ≤ x ≤ π

Note that this is just the heat equation with the temperature at both ends set to be
zero. We know that the solution are in the form (α = 1, L = π)

v(x, t) =
∞∑
n=1

bn sinnx e−n
2t.

The initial value for v(x, t) is

v(x, 0) =
∞∑
n=1

bn sinnx = − sinx+ 3 sin 2x+ 6 sin 5x.

Therefore
b1 = −1, b2 = 3, b5 = 6, bn = 0 (n 6= 1, 2, 5),

and
v(x, t) = −e−t sinx+ 3e−4t sin 2x+ 6e−25t sin 5x.

We conclude that

u(x, t) = v(x, t) + w(x) = (1− e−t) sinx+ 3e−4t sin 2x+ 6e−25t sin 5x.
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8. (20 points) Find the solution u(x, t) of the following wave equation problem: uxx = utt, 0 < x < π, t > 0
u(0, t) = u(π, t) = 0, t > 0
u(x, 0) = 2 sin 3x, ut(x, 0) = sin 4x, 0 ≤ x ≤ π

Solution. We consider instead the following two initial-boundary value problems

(I)

 uxx = utt, 0 < x < π, t > 0
u(0, t) = u(π, t) = 0, t > 0
u(x, 0) = 2 sin 3x, ut(x, 0) = 0, 0 ≤ x ≤ π

and

(II)

 uxx = utt, 0 < x < π, t > 0
u(0, t) = u(π, t) = 0, t > 0
u(x, 0) = 0, ut(x, 0) = sin 4x, 0 ≤ x ≤ π

From our discussion in class, solutions of (I) and (II) respectively take the form (L =
π, c = 1)

uI(x, t) =
∞∑
n=1

dn sinnx cosnt,

and

uII(x, t) =
∞∑
n=1

kn sinnx sinnt.

Now the non homogeneous parts of the initial conditions tell us

uI(x, 0) =
∞∑
n=1

dn sinnx = 2 sin 3x,

uIIt (x, 0) =
∞∑
n=1

nkn sinnx = sin 4x.

Thus,

d3 = 2, k4 =
1

4
,

and the rest of the coefficients are all zero.
We conclude that, by linearity,

u(x, t) = uI(x, t) + uII(x, t) = 2 sin 3x cos 3t+
1

4
sin 4x sin 4t.
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9. (20 points) Find the solution u(r, θ) of the following Laplace equation in the semicir-
cular region r < 1, 0 < θ < π: urr + 1

r
ur + 1

r2
uθθ = 0, 0 ≤ r < 1, 0 < θ < π

u(r, 0) = u(r, π) = 0, 0 ≤ r < 1
u(1, θ) = f(θ), 0 ≤ θ ≤ π,

assuming that u(r, θ) is single-valued and bounded in the given region.
Note: You are allowed to quote intermediate results in our solution of a similar problem
with the region being circular.

Solution. Same as in the case when the domain is circular, the separation of variable
will give us two ODEs: {

r2R′′ + rR′ − λR = 0,
Θ′′ + λΘ = 0.

Now the boundary conditions u(r, 0) = u(r, π) = 0 give us

R(r)Θ(0) = R(r)Θ(π) = 0,

which is just
Θ(0) = Θ(π) = 0.

Therefore, Θ(θ) satisfies the familiar two-point boundary value problem{
Θ′′ + λΘ = 0,
Θ(0) = Θ(π) = 0.

We know that the eigenvalues and eigenfunctions of this problem are

λn =
(nπ
π

)2
= n2, Θn(θ) = sinnx. (n = 1, 2, 3, ...)

Correspondingly, Rn(r) satisfies the Euler equation

r2R′′ + rR′ − n2R = 0,

and its general solution takes the form

Rn(r) = c1r
n + c2r

−n.

As in the circular case, we must have c2 = 0 in order for the solution to be bounded,
particularly as r → 0+. Therefore,

un(r, θ) = Rn(r)Θn(θ) = rn sinnθ.

And by the principle of superposition,

u(r, θ) =
∞∑
n=1

knun(r, θ) =
∞∑
n=1

knr
n sinnθ.

Now, take into consideration of the non-homogeneous boundary value, we have

f(θ) = u(1, θ) =
∞∑
n=1

kn sinnθ, 0 ≤ θ ≤ π.

Therefore, the (sine) Fourier coefficients kn are

kn =
2

π

∫ π

0

f(θ) sinnθdθ.

This completes the solution.
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10. (20 points) Consider the boundary value problem{
[(1 + x2)y′]′ + y = λ(1 + x2)y
y(0)− y′(1) = 0, y′(0) + 2y(1) = 0.

Let L be defined by L[y] = [(1 + x2)y′]′ + y. Prove that for any u(x), v(x) satisfying the
boundary conditions above,

〈L[u], v〉H = 〈u, L[v]〉H ,
where 〈u, v〉H denotes the Hermitian L2-inner product of u, v on the interval [0, 1].
Hint: You may use integration by parts twice.

Solution. By the definition of L and the Hermitian L2-inner product, we have

〈L[u], v〉H =

∫ 1

0

[(1 + x2)u′]′ vdx

=

∫ 1

0

vd[(1 + x2)u′]

= v(1 + x2)u′
∣∣∣1
0
−
∫ 1

0

v′(1 + x2)u′dx

= v(1 + x2)u′
∣∣∣1
0
−
∫ 1

0

v′(1 + x2)du(x)

= v(1 + x2)u′
∣∣∣1
0
− v′(1 + x2)u

∣∣∣1
0

+

∫ 1

0

[(1 + x2)v′]′ udx

= v(1 + x2)u′
∣∣∣1
0
− v′(1 + x2)u

∣∣∣1
0

+ 〈u, L[v]〉H .

Thus, to complete the proof, we need only to show

v(1 + x2)u′
∣∣∣1
0
− v′(1 + x2)u

∣∣∣1
0

= 0.

In fact, the boundary values (which are not separated) tell us

u′(1) = u(0), v′(1) = v(0), 2u(1) = −u′(0), 2v(1) = −v′(0).

Therefore,

v(1 + x2)u′
∣∣∣1
0
− v′(1 + x2)u

∣∣∣1
0

=2v(1) u′(1)− v(0) u′(0)− 2v′(1) u(1) + v′(0) u(0)

=− v′(0) u(0)− v(0) u′(0) + u′(0) v(0) + v′(0) u(0)

=0.

This completes the proof.
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Table of Laplace Transforms

f(t) = L−1{F (s)} F (s) = L{f(t)}

1
1

s
, s > 0

eat
1

s− a
, s > a

tn (n > 0, integer)
n!

sn+1
, s > 0

sin at
a

s2 + a2
, s > 0

cos at
s

s2 + a2
, s > 0

sinh at
a

s2 − a2
, s > 0

cosh at
s

s2 − a2
, s > 0

eat sin bt
b

(s− a)2 + b2
, s > a

eat cos bt
s− a

(s− a)2 + b2
, s > a

uc(t)
e−cs

s
, s > 0

ectf(t) F (s− c)

uc(t)f(t− c) e−csF (s)

f(ct)
1

c
F
(s
c

)
, c > 0

∫ t
0
f(t− τ)g(τ)dτ F (s)G(s)

δ(t− c) e−cs

f (n)(t) snF (s)− sn−1f(0)− ...− f (n−1)(0)

tnf(t) (−1)nF (n)(s)
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