9:00am-12:00pm, Thursday, June 25
I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community Standard.

Name:
Signature:

Instructions: This exam contains 12 pages and 10 problems with a table of Laplace transform at the end. You have $\mathbf{1 8 0}$ minutes to answer all the questions. You may use a calculator or a review sheet, front and back, written in your own handwriting. Throughout the exam, show your work with clear reasoning and calculation. If you are using a theorem to draw some conclusions, quote the result. If you do not completely solve a problem, explain what you understand about it. No collaboration on this exam is allowed. Good luck!

Problems	Points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Total	200	

1. (20 points) Find the inverse Laplace transform $f(t)=\mathcal{L}^{-1}\{F(s)\}$ of the following functions:
(1) $F(s)=\frac{s-2}{s^{2}+2 s+10}$
(2) $F(s)=\frac{e^{-s}}{s^{3}}$
(3) $F(s)=\frac{1}{\left(s^{2}-4\right)\left(s^{2}-9\right)}$
2. (20 points) Find the solution of the initial value problem

$$
y^{\prime \prime}+4 y=8 \sinh (2 t)+\delta(t-2 \pi) \quad y(0)=y^{\prime}(0)=0,
$$

where $\delta(t)$ is the Dirac delta function and $\sinh (t)$ is the hyperbolic sine function.
3. (20 points) Consider the first order ordinary differential equation

$$
e^{x}(x+1)+\left(y e^{y}-x e^{x}\right) \frac{d y}{d x}=0 .
$$

(1) Find an integrating factor $g(y)$ which makes this equation exact.
(2) Find the (implicit) solution of the differential equation above with $y(0)=1$.
4. (20 points) Find the general solution of the equation

$$
(x+1) y^{\prime \prime}-x y^{\prime}-y=0, \quad x>-1
$$

given that $y(x)=e^{x}$ is a solution. Your final answer could involve an indefinite integral.
5. (20 points) Use the series method to solve the initial value problem

$$
y^{\prime \prime}+3 x y^{\prime}+e^{x} y=2 x, \quad y(0)=1, y^{\prime}(0)=-1 .
$$

You need only to calculate terms up to the fourth power of x.
Note: The Taylor expansion of e^{x} at $x=0$ is

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots
$$

6. (20 points) Show by calculation that the Fourier series for the function

$$
f(x)=e^{x}, \quad-\pi \leq x<\pi, f(x)=f(x+2 \pi)
$$

is

$$
g(x)=\frac{\sinh \pi}{\pi}\left(1+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+n^{2}}(\cos n x-n \sin n x)\right) .
$$

What is the value of $g(\pi)$? Now find the limit of the infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}
$$

7. (20 points) Consider the initial-boundary value problem:

$$
\left\{\begin{array}{lc}
u_{x x}=u_{t}-\sin x, & 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t)=0, & t>0 \\
u(x, 0)=3 \sin 2 x+6 \sin 5 x, & 0 \leq x \leq \pi
\end{array}\right.
$$

(1) Find the steady state solution of this equation, i.e., a solution $w(x, t)=w(x)$ (does not depend on t) which satisfies the equation and the boundary values.
(2) Find the solution $u(x, t)$ of the initial-boundary value problem.

Hint: Which initial-boundary value problem does $v(x, t)=u(x, t)-w(x)$ satisfy?
8. (20 points) Find the solution $u(x, t)$ of the following wave equation problem:

$$
\left\{\begin{array}{lc}
u_{x x}=u_{t t}, & 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t)=0, & t>0 \\
u(x, 0)=2 \sin 3 x, u_{t}(x, 0)=\sin 4 x, & 0 \leq x \leq \pi
\end{array}\right.
$$

9. (20 points) Find the solution $u(r, \theta)$ of the following Laplace equation in the semicircular region $r<1,0<\theta<\pi$:

$$
\left\{\begin{array}{lc}
u_{r r}+\frac{1}{u^{2}} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, & 0 \leq r<1,0<\theta<\pi \\
u(r, 0)=u(, \pi)=0, & 0 \leq r<1 \\
u(1, \theta)=f(\theta), & 0 \leq \theta \leq \pi,
\end{array}\right.
$$

assuming that $u(r, \theta)$ is single-valued and bounded in the given region.
Note: You are allowed to quote intermediate results in our solution of a similar problem with the region being circular.
10. (20 points) Consider the boundary value problem

$$
\left\{\begin{array}{l}
{\left[\left(1+x^{2}\right) y^{\prime}\right]^{\prime}+y=\lambda\left(1+x^{2}\right) y} \\
y(0)-y^{\prime}(1)=0, \quad y^{\prime}(0)+2 y(1)=0 .
\end{array}\right.
$$

Let L be defined by $L[y]=\left[\left(1+x^{2}\right) y^{\prime}\right]^{\prime}+y$. Prove that for any $u(x), v(x)$ satisfying the boundary conditions above, we have

$$
\langle L[u], v\rangle_{H}=\langle u, L[v]\rangle_{H},
$$

where $\langle u, v\rangle_{H}$ denotes the Hermitian L^{2}-inner product of u, v on the interval $[0,1]$. Hint: You may use integration by parts twice.

Table of Laplace Transforms

$$
f(t)=\mathcal{L}^{-1}\{F(s)\} \quad F(s)=\mathcal{L}\{f(t)\}
$$

1	$\frac{1}{s},$	$s>0$
$e^{a t}$	$\frac{1}{s-a}$,	$s>a$
$t^{n}(n>0$, integer $)$	$\frac{n!}{s^{n+1}}$,	$s>0$
$\sin a t$	$\frac{a}{s^{2}+a^{2}}$,	$s>0$
$\cos a t$	$\frac{s}{s^{2}+a^{2}}$,	$s>0$
$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$,	$s>0$
$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$,	$s>0$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$,	, $s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$,	, $s>a$
$u_{c}(t)$	$\frac{e^{-c s}}{s}$,	$s>0$
$e^{c t} f(t)$	$F(s-$	$-c)$
$u_{c}(t) f(t-c)$	$e^{-c s} F$	(s)
$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$,	$c>0$

$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$

$$
\delta(t-c)
$$

$$
f^{(n)}(t)
$$

$$
t^{n} f(t)
$$

$$
\begin{gathered}
F(s) G(s) \\
e^{-c s} \\
s^{n-1} f(0)-\ldots \\
(-1)^{n} F^{(n)}(s)
\end{gathered}
$$

