
EXAM I, MATH 353 SUMMER I 2015

I have neither given nor received any unauthorized help on this exam and I have con-
ducted myself within the guidelines of the Duke Community Standard.

Name: Signature:

Instructions: You may not use any notes, books, calculators or computers. Moreover,
you must also show the work you did to arrive at the answer to receive full credit. If
you are using a theorem to draw some conclusions, quote the result. This test contains
9 pages and 6 questions. You have 75 minutes to answer all the questions.
Good Luck !

Useful Formulas:

yp(x) = −y1(x)

∫ x

x0

y2(s)g(s)

W (y1, y2)
ds + y2(x)

∫ x

x0

y1(s)g(s)

W (y1, y2)
ds,

or (
y1 y2
y′1 y′2

)(
u′1
u′2

)
=

(
0

g(x)

)
.

You are responsible for identifying correctly the situation in which these formulas can
be applied.

Question Max. Points Score

1 25

2 15

3 20

4 20

5 15

6 5

Total 100
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1. (25 points) Consider the differential equation

y2 + y − x
dy

dx
= 0.

(1) Show that this equation is not exact.

Solution. The equation is already in the form

M(x, y) + N(x, y)
dy

dx
= 0.

We have
∂M

∂y
= 2y + 1,

∂N

∂x
= −1,

which are not equal.
Therefore, the above equation is not exact.

(2) Find an integrating factor for this equation.
Hint: There exists an integrating factor v(y). Also, before proceeding to the next ques-
tion, you may want to check that the original equation becomes exact when multiplied
by the integrating factor you obtained.

Solution. Suppose that the equation becomes exact after being multiplied by a function
v(y). The equation now looks like:

v(y)(y2 + y)− xv(y)
dy

dx
= 0.

For this to be exact, we need

∂

∂y
[v(y)(y2 + y)] =

∂

∂x
(−xv(y)).

This is equivalent to
(y2 + y)v′ + (2y + 1)v = −v,

and simplifies to
v′

v
= −2

y
.

Hence, a choice of v(y) is
v(y) = y−2.
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(3) Find the general solutions of the original equation. Make sure you have considered
all cases.

Solution. Note that the integrating factor turns the equation into the exact equation:

1 +
1

y
− x

y2
dy

dx
= 0.

But be careful, here we need y 6= 0, while the original equation does not require this.
In fact we have:
Case 1: y(x) = 0 is a solution of the original equation.
Case 2: If y(x) 6= 0, let F (x, y) be a function satisfying

∂F

∂x
= 1 +

1

y
,

∂F

∂y
= − x

y2
.

By the first equality,

F (x, y) =

∫ (
1 +

1

y

)
dx + h(y) = x +

x

y
+ h(y),

for some function h(y).
It follows from the second equality that

− x

y2
=

∂F

∂y
= − x

y2
+ h′(y).

Thus,
h′(y) = 0,

and we can choose
h(y) = 0.

Therefore,

F (x, y) = x +
x

y
= C

are all solutions for y 6= 0.
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2. (15 points) Solve the initial value problem

xy2 + (1− x)
dy

dx
= 0, y(2) = 1,

and find the domain of definition of the solution.
Note: The graphs of x− 1 and e3−x intersect at x ≈ 2.557.

Solution. Observe that the equation, being equivalent to

x

1− x
+

1

y2
dy

dx
= 0

away from x = 1 and y = 0, is separable.
By taking antiderivatives, we have

d

dx
(−x− ln |1− x| − y−1) = 0

Therefore, the general solutions for the original equation, away from the critical values
of x and y are

−x− ln |1− x| − 1

y
= C,

for some constant C.

Now use the initial value (x0, y0) = (2, 1). We obtain:

C = −2− ln 1− 1 = −3.

Thus, the solution to the initial value problem is

−x− ln |1− x| − 1

y
= −3,

or
y(x) = (3− x− ln |1− x|)−1.

Since the initial x0 = 2, using the given information, this solution is valid on (1, 2.557).
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3. (20 points) Given that y1(x) = x and y2(x) = x−1 are two solutions of the differential
equation

x2y′′ + xy′ − y = 0,

find the general solution of

x2y′′ + xy′ − y = x2e−x, x > 0.

Solution. Use the method of variation of parameters.
Let u1(x), u2(x) be functions so that u1y1 + u2y2 is a particular solution of the non-
homogeneous equation above. Note that

W (y1, y2) = det

(
x x−1

1 −x−2
)

= −2

x
,

and in our formula
g(x) = e−x.

Then we have (
u′1
u′2

)
=

1

W (y1, y2)

(
y′2 −y2
−y′1 y1

)(
0
e−x

)
=

1

2

(
e−x

−x2e−x

)
.

Thus, we could choose

u1 = −1

2
e−x,

and

u2 = −1

2

∫
x2e−xdx.

To evaluate the integral, we could use integration by parts. Another approach is by
calculating the following three derivatives:

(x2e−x)′ = 2xe−x − x2e−x(1)

(xe−x)′ = e−x − xe−x(2)

(e−x)′ = −e−x(3)

It is easy to see that (1) + 2(2) + 2(3) gives

(x2e−x + 2xe−x + 2e−x)′ = −x2e−x.

Therefore, we could take

u2 =
1

2
x2e−x + xe−x + e−x,

and

yp = u1y1 + u2y2 = −1

2
xe−x +

1

x

(1

2
x2e−x + xe−x + e−x

)
=
(

1 +
1

x

)
e−x.

We conclude that the general solution of the original equation is

y(x) = c1x + c2x
−1 +

(
1 +

1

x

)
e−x,

for arbitrary constants c1, c2.

5



4. (20 points) Consider the following nonlinear first order differential equation

dy

dx
= p(x) + q(x)y + r(x)y2,

where p(x), q(x), r(x) are continuous functions. Equations of this type are called the
Riccati equations.

(1) Suppose that one solution y1 is known. Show that the substitution z = (y − y1)
−1

transforms the above differential equation (in y) into a first order linear ordinary differ-
ential equation in the z variable.

Solution. To obtain the first order equation that z satisfies, we take the derivative of
z:

z′ =
( 1

y − y1

)′
= − y′ − y′1

(y − y1)2
.

Now use the assumption that both y1 and y are solutions, obtaining

z′ = − 1

(y − y1)2
[(p(x) + q(x)y + r(x)y2)− (p(x) + q(x)y1 + r(x)y1

2)]

= − 1

(y − y1)2
[q(x)(y − y1) + r(x)(y − y1)(y + y1)]

= −q(x)z − r(x)
y + y1
y − y1

= −q(x)z − r(x)
(

1 +
2y1

y − y1

)
= −q(x)z − r(x)− 2r(x)y1(x)z.

To put this in a more concise form:

z′ = −r − (q + 2ry1)z.

This is clearly a first order linear ODE in z.
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(2) Now, use what you obtained in part (1) to find another solution of the differential
equation

dy

dx
= (x3 + 1)− 2x2y + xy2,

given that y1(x) = x is a solution.

Solution. In this equation,

p(x) = x3 + 1, q(x) = −2x2, r(x) = x.

Therefore, by the previous part and y1 = x,

z′ = −x− (−2x2 + 2x2)z = −x.
Hence,

z = −1

2
x2.

Substituting back to y, it follows that

y =
1

z
+ y1 = −2x−2 + x

is another solution.
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5. (15 points) Suppose that, under natural conditions, the population of fish in a pond
obeys the model

ṗ = p(1− p).

Now, suppose that people start harvesting from the pond at a rate of rp (0 < r < 1) per
unit time, which is relative to the population p.

(1) Establish a model (differential equation) which describes the population of fish in
the pond after the harvesting has started.

Solution.
ṗ = p(1− p)− rp.

(2) Sketch the phase line corresponding to the equation that you have written. Specify
the equilibria and their stability. Assuming that p(0) > 0, is it possible that, for certain
values of r ∈ (0, 1), the fish would go extinct under our harvesting scheme?

Solution. Note that the equation can be rewritten as

ṗ = p(1− r − p).

It is not hard to see that the right hand side is a quadratic function which vanishes at
p = 0 and p = 1− r. Thus, we have the plot:

1-r, stable

0, unstable

-
0.
5

0.
5

1.
0

1.
5

-
1.
2

-
1.
0

-
0.
8

-
0.
6

-
0.
4

-
0.
2

0.
2

In fact, p = 0 and p = 1 − r are the two equilibria, which are unstable and stable,
respectively.
From the analysis, we can see that there exists no such r so that the fish goes extinct
under the harvesting rate rp.
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6. (5 points) What is a first order autonomous equation that has exactly the phase line
below?

-1

1

3

ySolution. We look for an equation that looks like

y′ = f(y).

The direction of the arrows tell us the sign of the function f(y) is +,−,−,+
on the intervals (−∞,−1), (−1, 1), (1, 3), (3,∞), respectively. We know that
f(y) vanishes at −1, 0, 1, 3. We also know from the two successive negative
sign that the graph of the function f(y) touches the point (1, 0) in the y-y′

plane but does not pass through the y-axis. So we could try

y′ = f(y) = (y + 1)(y − 1)2(y − 3).

It is easy to check all the signs and conclude that this is a correct choice.
Of course, answers to this question are not unique.
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