Math 3001-01 Spring 2020 Exam I

I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the CU Community Standard.

Name: _____

Signature: _____

Instructions:

- Notes, books, calculators or computers are not allowed in this exam.
- Make sure you show the work that leads to your answer to receive full credit. If you are using a theorem or a fact to draw some conclusions, quote the result.
- This test contains **4 questions**. You have **50 minutes** to answer all the questions.

Good Luck!

Question	Score
1	/ 25
2	/ 25
3	/ 25
4	/ 25
Total	/100

- **1.** This question is about the **supremum** of subsets of \mathbb{R} .
 - (1) Let $A \subset \mathbb{R}$ be a nonempty subset. As long as A is (write down a suitable word in each of the two boxes below)

there exists a number $s \in \mathbb{R}$ that satisfies the following two conditions:

i.

ii.

Such an s is called the **supremum** of A; and the fact described above is called the

.

Axiom of

(2) Determine the **suprema** of the following subsets of \mathbb{R} , if they exist. (You do *not* need to prove your conclusions.)

i.
$$(0,\sqrt{3}) \cap \mathbb{Q}$$

ii.
$$\bigcap_{n=1}^{\infty} \left(-\infty, \frac{2}{n}\right)$$

iii.
$$\bigcup_{n=1}^{\infty} (n, n+1)$$

- 2. This question is concerned with "cardinality".
 - (1) Let A be a set. What does it mean by saying that A is **countable**? (Write down the definition.)

(2) Cite a known property of countable sets to prove that the Cartesian product $\mathbb{N} \times \mathbb{N}$ is countable.

- 3. This question is concerned with the "Monotone Convergence Theorem".
 - (1) State the Monotone Convergence Theorem of sequences.

(2) Define a sequence (a_n) by

$$a_1 = 1, \quad a_{k+1} = \frac{1}{5 - a_k} \quad (k = 1, 2, \ldots).$$

Use mathematical induction to show that (a_n) is decreasing.

(3) Does the sequence in part (2) converge? If so, what is the limit? Justify your answer.

- 4. For each of the following, either give an example that satisfies the condition(s), or explain why an example does not exist.
 - (1) A divergent sequence (a_n) all whose convergent subsequences share the same limit.

(2) A convergent sequence (a_n) that is **not** monotone.

(3) A sequence (a_n) that satisfies: $0 < a_n < 2020$ for all $n \in \mathbb{N}$, and all subsequences of (a_n) diverge.