PROBLEM SET 3 SOLUTION

Part I

1. i. The graph of $f_{x}(x)$ looks like ii. Though it is possible to tell immediately from the

symmetry in the graph that $c=1$, we could still use calculate to obtain the value; namely, by calculating

$$
\begin{aligned}
1=\int_{-\infty}^{\infty} f_{c}(x) & =\int_{-1}^{0} c x^{2} d x+\int_{0}^{1}\left(c-c x^{2}\right) d x \\
& =\left.\frac{c x^{3}}{3}\right|_{-1} ^{0}+\left.\left(c x-\frac{c}{3} x^{3}\right)\right|_{0} ^{1} \\
& =\frac{c}{3}+c-\frac{c}{3} \\
& =c
\end{aligned}
$$

Hence,

$$
c=1
$$

iii. If $x<-1$, then

$$
F(x)=\int_{-\infty}^{x} 0 d t=0
$$

if $-1 \leq x<0$, then

$$
F(x)=\int_{-\infty}^{x} f_{1}(t) d t=\int_{-1}^{x} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{-1} ^{x}=\frac{1}{3}+\frac{x^{3}}{3}
$$

if $0 \leq x<1$, then

$$
F(x)=\int_{-\infty}^{x} f_{1}(t) d t=\int_{-1}^{0} t^{2} d t+\int_{0}^{x}\left(1-t^{2}\right) d t=\frac{1}{3}+x-\frac{x^{3}}{3}
$$

if $x \geq 1$, then

$$
F(x)=1 .
$$

In summary,

$$
F(x)=\left\{\begin{array}{lc}
0, & t<-1, \\
\frac{1}{3}+\frac{x^{3}}{3}, & -1 \leq x<0, \\
\frac{1}{3}+x-\frac{x^{3}}{3}, & 0 \leq x<1, \\
1, & x \geq 1
\end{array}\right.
$$

The graph of $F(x)$ looks like:

2. i. The integral $\int_{-2}^{3} \frac{1}{x^{3}} d x$ is improper, it can be written as

$$
\int_{-2}^{3} \frac{1}{x^{3}} d x=\int_{-2}^{0} \frac{1}{x^{3}} d x+\int_{0}^{3} \frac{1}{x^{3}} d x
$$

where neither of the integrals on the right hand side are convergent. As a result, the original integral diverges. (Caution: One should not apply the fundamental theorem of calculus here, as the original integrand is undefined at $x=0$.)
ii. Using partial fractions, we let

$$
\frac{3}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}=\frac{A+C x+(A+B) x^{2}}{x\left(x^{2}+1\right)}
$$

and it can be solved that

$$
A=3, \quad B=-3, \quad C=0 .
$$

Hence,

$$
\begin{aligned}
\int_{1}^{2} \frac{3}{x\left(x^{2}+1\right)} d x & =\int_{1}^{2} \frac{3}{x} d x-\int_{1}^{2} \frac{3 x}{1+x^{2}} d x \\
& =\left.3 \ln x\right|_{1} ^{2}-\left.\frac{3}{2} \ln \left(1+x^{2}\right)\right|_{1} ^{2} \\
& =3 \ln 2-\frac{3}{2}(\ln 5-\ln 2) \\
& =\frac{9}{2} \ln 2-\frac{3}{2} \ln 5 .
\end{aligned}
$$

iii. Integration by parts. Letting $u=x, v^{\prime}=\cos 2 x$; then $u^{\prime}=1, v=\frac{1}{2} \sin 2 x$.

$$
\begin{aligned}
\int_{0}^{1} x \cos 2 x d x & =\left.\frac{1}{2} x \sin 2 x\right|_{0} ^{1}-\int_{0}^{1} \frac{1}{2} \sin 2 x d x \\
& =\frac{1}{2} \sin 2+\left.\frac{1}{4} \cos 2 x\right|_{0} ^{1} \\
& =\frac{1}{2} \sin 2+\frac{1}{4}(\cos 2-1)
\end{aligned}
$$

iv. With the u-substitution: $u=\arctan x$, thus $d u=\frac{1}{\arctan x} d x$, the integral becomes

$$
\int_{\pi / 4}^{\pi / 2} \frac{1}{u} d u=\left.\ln u\right|_{\pi / 4} ^{\pi / 2}=\ln 2
$$

v. Since the integrand is an odd function, and the integration is over a symmetric interval, the integral equals to zero.
vi. Again, the integrand is odd, and the interval is symmetric; however, one has to treat this as an improper integral:

$$
\int_{-\infty}^{\infty} x e^{-x^{2}} d x=\lim _{b \rightarrow-\infty} \int_{b}^{0} x e^{-x^{2}} d x+\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x^{2}} d x
$$

Note that $x e^{-x^{2}}$ is continuous and,

$$
\int x e^{-x^{2}} d x=-\frac{1}{2} e^{-x^{2}},
$$

we have

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x^{2}} d x=\frac{1}{2}, \quad \lim _{b \rightarrow-\infty} \int_{b}^{0} x e^{-x^{2}} d x=\frac{-1}{2} .
$$

Thus the original integral converges and equals to zero.
vii. Let $u=1+x^{2}$, then $d u=2 x d x$. The integral becomes

$$
\frac{1}{2} \int_{1}^{2} \sqrt{u} d u=\left.\frac{1}{2}\left(\frac{2}{3} u^{3 / 2}\right)\right|_{1} ^{2}=\frac{1}{3}(2 \sqrt{2}-1)
$$

viii. Partial fraction gives

$$
\frac{1}{x^{4}-1}=\frac{1}{2\left(x^{2}-1\right)}-\frac{1}{2\left(x^{2}+1\right)}=\frac{1}{4(x-1)}-\frac{1}{4(x+1)}-\frac{1}{2\left(x^{2}+1\right)} .
$$

Thus the integral equals to

$$
\left.\left(\frac{1}{4} \ln |x-1|-\frac{1}{4} \ln |x+1|-\frac{1}{2} \arctan (x)\right)\right|_{2} ^{3}=\frac{1}{4}(\ln 3-\ln 2)-\frac{1}{2}(\arctan (3)-\arctan (2)) .
$$

3. According to the length formula for parametrized curves, we have

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{(1-\cos t)^{2}+\sin ^{2} t} d t \\
& =\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t \\
& =\int_{0}^{2 \pi} \sqrt{4 \sin ^{2}(t / 2)} d t \\
& =2 \int_{0}^{2 \pi} \sin \frac{t}{2} d t \\
& =-\left.4 \cos \frac{t}{2}\right|_{0} ^{2 \pi} \\
& =8 .
\end{aligned}
$$

4. By the length formula, we have

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+\frac{9}{4} x} d x \\
\left(u=1+\frac{9}{4} x\right) & =\frac{4}{9} \int_{1}^{13 / 4} \sqrt{u} d u \\
& =\left.\frac{8}{27} u^{3 / 2}\right|_{1} ^{13 / 4} \\
& =\frac{13 \sqrt{13}}{27}-\frac{8}{27} .
\end{aligned}
$$

5. By the volume formula, we have

$$
\begin{aligned}
V & =\int_{0}^{\pi} \pi \sin ^{2} x d x \\
& =\int_{0}^{\pi} \frac{\pi}{2}(1-\cos 2 x) d x \\
& =\frac{\pi^{2}}{2}-\left.\frac{\pi}{4} \sin 2 x\right|_{0} ^{\pi} \\
& =\frac{\pi^{2}}{2} .
\end{aligned}
$$

6. No. A cumulative distribution function must tend to 1 as x tends to infinity, which means its integral over $(-\infty, \infty)$ must be infinity, rather than 1 , which is the case for a probability density function.

Part II

i.

$$
\begin{gathered}
\mathrm{PV}=\int_{2017}^{L} e^{-r(t-2017)} p(t) d t \\
\mathrm{FV}=\int_{2017}^{L} e^{r(L-t)} p(t) d t
\end{gathered}
$$

ii. It makes sense because, in the case when the interest rate compounds continuously at a constant rate r, the future value must be the present value multiplied by $e^{r T}$, where T is the difference between the future and present times.
iii. The present value for all the income starting from 2017 is

$$
\int_{2017}^{\infty} 2(t-2017) e^{-r(t-2017)} d t
$$

With the substitution $u=t-2017$, this integral becomes

$$
\int_{0}^{\infty} 2 u e^{-r u} d u
$$

which, by integration by parts, equals to $\frac{2}{r^{2}}$. Since $r=0.05$, we obtain that the present value of all the income is 800 thousand dollars, hence choose selling the mart now for better profit.

