PROBLEM SET 3

Due: Mon., Mar. 6

Part I

1. You're given a function

$$
f_{c}(x)=\left\{\begin{array}{lc}
0, & x<-1, \\
c x^{2}, & -1 \leq x<0, \\
c-c x^{2}, & 0 \leq x<1, \\
0, & x \geq 1
\end{array} \quad(c>0)\right.
$$

i. Sketch the graph of $f_{c}(x)$.
ii. For which value of c does $f_{c}(x)$ represent a probability density function?
iii. Find the cumulative distribution function $F(x)$ associated to the density function $f_{c}(x)$ you determined in part ii. Plot the graph of $F(x)$.
2. Evaluate the following integrals.
i. $\int_{-2}^{3} \frac{1}{x^{3}} d x$;
ii. $\int_{1}^{2} \frac{3}{x\left(x^{2}+1\right)} d x$;
iii. $\int_{0}^{1} x \cos 2 x d x$;
iv. $\int_{1}^{\infty} \frac{1}{\left(x^{2}+1\right) \arctan x} d x$;
v. $\int_{-1}^{1} \sin ^{2017} x d x$;
vi. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$;
vii. $\int_{0}^{1} x \sqrt{1+x^{2}} d x$;
viii. $\int_{2}^{3} \frac{1}{x^{4}-1} d x$.
3. When you roll a circle (assumed to have radius 1) along a straight line without slip, the point on the circle which initially touches the line will trace out a curve, known as a cycloid. Let t denote the angle being rotated from the beginning, then such a cycloid has the parametrization

$$
(x(t), y(t))=(t-\sin t, 1-\cos t), \quad t \geq 0
$$

Compute the length of one arch of this cycloid, namely, between $0 \leq t \leq 2 \pi$.

4. Compute the length of the graph of $f(x)=x^{3 / 2}$ within $0 \leq x \leq 1$.
5. Consider the graph of $y=\sin x$ along the inverval $0 \leq x \leq \pi$. Rotating it about the x-axis produces a shape that looks like an American football. Find the volume of this shape.
6. Let $f(x)$ be a function defined on $(-\infty, \infty)$ and $f(x) \geq 0$. Is it possible for $f(x)$ to be both a probability density function and a cumulative distribution function? Explain.

Part II

This part is concerned with the topic of present/future values.
Supposing that during $2017 \leq t \leq L$ (in year), the continuous income stream (from your mart) is predicted to be at rate of $p(t)$ (thousands dollars per year), the (yearly) interest rate being a constant r (interest compounded continuously).
i. Write down the formulas for the present value (PV) (at $t=2017$) and the future value (FV) (at $t=L$) for the entire income during this time.
ii. Observe that, for the PV and FV you found in part i, you have FV $=e^{r(L-2017)} \cdot \mathrm{PV}$. Why does this make sense?
iii. Now suppose that $p(t)$ and r are given:

$$
p(t)=2(t-2017), \quad r=0.05
$$

and let L be large enough; you are deciding in between running the mart from $t=2017$ to $t=L$ and selling it now (at $t=2017$) for $\$ 850,000$. Which would you choose for better profit?

