
PROBLEM SET 2 SOLUTION

Due: Fri., Feb.24

Part I

This part contains two problems. The first finishes an integral which is not completed in our

textbook, whose solution involves a combination of integration by substitution, partial fractions,

and integration by parts; but if you get to problem “11
2”, a simpler and alternative way to inte-

grate
∫ √

1 + x2 dx is available; the second, using integration by parts only and thus obtaining

recurrence formulas, we arrive at an infinite product that approximates π. These questions are

somewhat challenging in themselves, but, hopefully, become managable as they are broken down

into pieces, and the goal is for you to see how far you could go with what you’ve learned already.

I.1. In class we used the substitution x =
1

tan θ
(θ ∈ (−π/2, π/2)) to transform the integral∫ 1

0

√
1 + x2 dx

to ∫ π/4

0

1

cos3 θ
dθ,

(see also, Hughes-Hallett pp. 382-383), whose value still remains to be found. In fact, if one
uses cos2 θ + sin2 θ = 1, the latter integral can be expressed as∫ π/4

0

1

cos θ
dθ +

∫ π/4

0

sin2 θ

cos3 θ
dθ.

For the first member in the summation, one could again use the trigonometry identity
mentioned to rewrite it as∫ π/4

0

1

cos θ
dθ =

∫ π/4

0

cos θdθ +

∫ π/4

0

sin2 θ

cos θ
dθ.

As a result, we have∫ π/4

0

1

cos3 θ
dθ =

∫ π/4

0

cos θdθ︸ ︷︷ ︸
P

+

∫ π/4

0

sin2 θ

cos θ
dθ︸ ︷︷ ︸

Q

+

∫ π/4

0

sin2 θ

cos3 θ
dθ︸ ︷︷ ︸

R

.

For the expression on the right hand side of the previous equality, the first member is obvious
to integrate:

P =

∫ π/4

0

cos θdθ = sin θ
∣∣∣π/4
0

=

√
2

2
.

For the second member Q, if we make the substitution u = sin θ (noting that this sub-
stitution makes sense as x and θ admit a one-to-one correspondence, since θ belongs to
(−π/2, π/2)), then we have

du = cos θdθ.
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i.Show that, under this substitution, and by using the previously mentioned trigonometry

identity, the integral Q =
∫ π/4
0

sin2 θ
cos θ

dθ is transformed to

Q =

∫ √2/2
0

u2

1− u2
du.

As u = sin θ, we have du = cos θdθ, hence

Q =

∫ π/4

0

sin2 θ

cos2 θ
· cos θdθ =

∫ √2/2
0

u2

1− u2
du.

ii.Evaluate the integral you found in part i by expanding its integrand using partial fractions:

u2

1− u2
= A+

B

1 + u
+

C

1− u
.

(Note: When you integrate
∫

(1− u)−1du, be careful with the negative sign!)

Noting that
u2

1− u2
= −1 +

1

1− u2
,

one only needs to apply partial fractions to 1
1−u2 , say,

1

1− u2
=

A

1− u
+

B

1 + u
,

which requires
A(1 + u) +B(1− u) ≡ 1.

By matching the coefficients of different powers of u on both sides of the previous
equation, we have A+B = 1 and A−B = 0, which leads to

A = B =
1

2
.

Therefore,

Q =

∫ √2/2
0

u2

1− u2
=

∫ √2/2
0

(
−1 +

1

2(1− u)
+

1

2(1 + u)

)
=

(
−u− 1

2
ln |1− u|+ 1

2
ln |1 + u|

)∣∣∣∣
√
2/2

0

= −
√

2

2
+

1

2
ln

(√
2 + 1√
2− 1

)
.

iii.Use the method of integration by parts, by taking u = sin θ, v =
1

2 cos2 θ
, to show that

R =

∫ π/4

0

sin2 θ

cos3 θ
dθ = sin θ · 1

2 cos2 θ

∣∣∣∣π/4
0

− 1

2

∫ π/4

0

1

cos θ
dθ

= sin θ · 1

2 cos2 θ

∣∣∣∣π/4
0

− 1

2
(P +Q).
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With the given choice of u, v, we have u′ = cos θ, v′ =
sin θ

cos3 θ
, hence uv′ =

sin2 θ

cos3 θ
and

u′v =
1

2 cos θ
. Now, by integration by parts,

R =

∫ π/4

0

uv′dθ = sin θ · 1

2 cos2 θ︸ ︷︷ ︸
uv

∣∣∣π/4
0
−
∫ π/4

0

1

2 cos θ︸ ︷︷ ︸
u′v

dθ.

The desired formula then follows immediately by noting that
∫ π/4
0

1
cos θ

dθ is equal to
P +Q.

iv. Finish up by finding the original integral, which is now, symbolically, P +Q+ R. Just
for you to check your answer, it should be consistent with the formula for the indefinite
integral ∫

1

cos3 θ
dθ =

sin θ

2 cos2 θ
+

1

4
ln

(
1 + sin θ

1− sin θ

)
+ c,

where c is an arbitrary constant.

By the previous part, we have

R =

√
2

2
− 1

2
(P +Q),

hence, by adding P +Q on both sides,

P +Q+R =

√
2

2
+

1

2
(P +Q).

By previous calculation, we have

P +Q =
1

2
ln

(√
2 + 1√
2− 1

)
.

Thus,

P +Q+R =

√
2

2
+

1

4
ln

(√
2 + 1√
2− 1

)
.

I.11
2
. There is an alternative way to find the integral

∫ √
1 + x2 dx, that is, by substituting

using the hyperbolic trig. functions. Recall the definition

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
,

as well as several properties as one could easily verify:

cosh2 t− sinh2 t = 1,

d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t.

The property cosh2 t− sinh2 t = 1 motivates the term “hyperbolic”, as (cosh t, sinh t) always
lie on a branch of the hyperbola u2 − v2 = 1 in the u-v plane.
Now apply the substitution

x = sinh t

to the integral
∫ √

1 + x2 dx to show that it equals to

1

4
sinh 2t+

1

2
t+ c,
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where t = sinh−1(x) (the “-1” indicates the inverse of a function, instead of the power of
sinhx) and c is an arbitrary constant.

By making the substitution x = sinh t, we have dx = cosh t dt, and
√

1 + x2 =√
1 + sinh2 t =

√
cosh2 t = cosh t. Hence,∫ √

1 + x2dx =

∫
cosh t(cosh t dt) =

∫
cosh2 tdt.

Since

cosh2 t =
e2t + e−2t + 2

4
=

1

2
cosh 2t+

1

2
,

we have ∫
cosh2 tdt =

∫
1

2
cosh 2t+

1

2
dt =

1

4
sinh 2t+

1

2
t+ c,

as desired.

I.2. An infinite product that approximates π can be found by studying the integrals

Im :=

∫ π/2

0

sinm x dx, m = 0, 1, 2, ...

using integration by parts.

i. For m = 0, 1 each, evaluate the definite integral Im =
∫ π/2
0

sinm x dx.

For m = 0,

I0 =

∫ π/2

0

1 dx =
π

2
;

for m = 1,

I1 =

∫ π/2

0

sinxdx = − cosx
∣∣∣π/2
0

= 1.

ii. If m ≥ 2, one could write the integral Im as

Im =

∫ π/2

0

(sinx)m−1(sinx)dx.

Use integration by parts once to show that

Im =

∫ π/2

0

(m− 1)(sinx)m−2(cosx)2dx;

then, by writing cos2 x as 1− sin2 x, show that

Im =
m− 1

m
Im−2.
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Taking u = sinm−1 x, v = − cosx, we have

uv′ = sinm−1 x sinx = sinm x,

uv = − sinm−1 x cosx,

u′v = −(m− 1) sinm−2 x cos2 x.

Using the integration by parts formula, we have

Im = − sinm−1 x cosx
∣∣∣π/2
0

+

∫ π/2

0

(m− 1) sinm−2 x cos2 x dx.

The first term on the right hand side vanishes, because cos(π/2) = 0 and because
m ≥ 2, sin 0 = 0. The second term can be rewritten as∫ π/2

0

(m− 1) sinm−2 x(1− sin2 x) dx

= (m− 1)

∫ π/2

0

sinm−2 x dx− (m− 1)

∫ π/2

0

sinm x dx

= (m− 1)Im−2 − (m− 1)Im,

which, by the previous argument, also equals to Im. Hence, one easily solves from
Im = (m− 1)Im−2 − (m− 1)Im and get

Im =
m− 1

m
Im−2.

iii.(Reading) Let n denote sufficiently large positive integers. According to parts i and ii,
you should have,

I2n+1 =
2n

2n+ 1
· 2n− 2

2n− 1
· ... · 2

3
· 1,

I2n =
2n− 1

2n
· 2n− 3

2n− 2
· ... · 1

2
· π

2
.

In particular, since sinx ≤ 1 for x ∈ [0, π/2], we have

(sinx)2n+1 ≤ (sinx)2n ≤ (sinx)2n−1,

and thus
I2n+1 ≤ I2n ≤ I2n−1.

Dividing these inequalities by I2n+1 and using part ii, we have

1 ≤ I2n
I2n+1

≤ 2n+ 1

2n
.

Letting n→∞, one is forced to have

lim
n→∞

I2n
I2n+1

= 1.

On the other hand, I2n/I2n+1 is equal to

π

2

(
1 · 3
22
· 3 · 5

42
· ... · (2n− 1)(2n+ 1)

(2n)2

)
.

Combining facts above, we have

π

2
= lim

n→∞

22

1 · 3
· 42

3 · 5
· ... · (2n)2

(2n− 1)(2n+ 1)
.



Part II

II.1. We learned in class that the integral
∫∞
1

1
xp

converges if and only if p > 1. Now use a
comparison argument, without evaluating the integrals, to determine the convergence of the
following improper integrals:

(a)

∫ ∞
1

1√
x+ x2

, (b)

∫ ∞
1

3

(x5 + 4x3 + 2x+ 1)1/3
.

(a) Noting that
1√

x+ x2
≥ 1√

2x2
=

1√
2
· 1

x
for x ≥ 1, and that

∫∞
1

1
x

diverges, we

see that this given improper integral is divergent. (Note: You could also invoke the
“integral test” from the series chapter, but applied in a reversed way.)

(b) When x ≥ 1, we have
3

(x5 + 4x3 + 2x+ 1)1/3
≤ 3

(x5)1/3
= 3 · 1

x5/3
. Since the

integral
∫∞
1

1
x5/3

converges, the given improper integral also converges; where we have
used the fact that the integrand is always positive.

II.2. Supposing that
∫ 1

0
f ′(sinx) cosx dx = 10, and f(0) = 1, what’s the value of f(sin 1)?

Letting u = sinx, we have du = cosxdx, then the given integral becomes∫ u(1)

u(0)

f ′(u)du = f(u)
∣∣∣u=u(1)
u=u(0)

= f(sin(1))− f(sin(0)) = f(sin 1)− 1.

Clearly, f(sin 1) = 11.

II.3. Let f(x) be a continuous, increasing, concaving-down function defined on the interval
[0, 1]. Put the following quantities in increasing order:

∫ 1

0

f(x)dx, LEFT(n), RIGHT(n), MID(n), TRAP(n).

LEFT(n) ≤ TRAP(n) ≤
∫ 1

0

f(x)dx ≤ MID(n) ≤ RIGHT(n).

II.4. Supposing that for a certain function f(x) defined on [1, 2], you only know that it

satisfies
∫ 2

1
f(x)dx = 8, is it possible to find each of the following integrals? What if you

know in addition that f(2) = 2, does your answer change?

(a)

∫ 9

3

x f(2x2 + 1)dx, (b)

∫ 2

1

(x− 1)f ′(x)dx.



PROBLEM SET 2 SOLUTION 7

(a) Making the substitution u = 2x2 + 1 transforms the integral into

1

4

∫ 163

19

f(u)du,

whose value is impossible to be determined with what’s given.
(b) Using integration by parts, and letting u = x − 1, v = f(x), we have uv =
(x− 1)f(x), u′v = f(x), and thus∫ 2

1

(x− 1)f ′(x)dx = (x− 1)f(x)
∣∣∣2
1
−
∫ 2

1

f(x)dx = f(2)− 8,

which equals to 6, only with the given f(2) = 2.


