
PROBLEM SET 2

Due: Fri., Feb.24

Part I

This part contains two problems. The first finishes an integral which is not completed in our

textbook, whose solution involves a combination of integration by substitution, partial fractions,

and integration by parts; but if you get to problem “11
2”, a simpler and alternative way to inte-

grate
∫ √

1 + x2 dx is available; the second, using integration by parts only and thus obtaining

recurrence formulas, we arrive at an infinite product that approximates π. These questions are

somewhat challenging in themselves, but, hopefully, become managable as they are broken down

into pieces, and the goal is for you to see how far you could go with what you’ve learned already.

I.1. In class we used the substitution x =
1

tan θ
(θ ∈ (−π/2, π/2)) to transform the integral∫ 1

0

√
1 + x2 dx

to ∫ π/4

0

1

cos3 θ
dθ,

(see also, Hughes-Hallett pp. 382-383), whose value still remains to be found. In fact, if one
uses cos2 θ + sin2 θ = 1, the latter integral can be expressed as∫ π/4

0

1

cos θ
dθ +

∫ π/4

0

sin2 θ

cos3 θ
dθ.

For the first member in the summation, one could again use the trigonometry identity
mentioned to rewrite it as∫ π/4

0

1

cos θ
dθ =

∫ π/4

0

cos θdθ +

∫ π/4

0

sin2 θ

cos θ
dθ.

As a result, we have∫ π/4

0

1

cos3 θ
dθ =

∫ π/4

0

cos θdθ︸ ︷︷ ︸
P

+

∫ π/4

0

sin2 θ

cos θ
dθ︸ ︷︷ ︸

Q

+

∫ π/4

0

sin2 θ

cos3 θ
dθ︸ ︷︷ ︸

R

.

For the expression on the right hand side of the previous equality, the first member is obvious
to integrate:

P =

∫ π/4

0

cos θdθ = sin θ|π/40 =

√
2

2
.

For the second member Q, if we make the substitution u = sin θ (noting that this sub-
stitution makes sense as x and θ admit a one-to-one correspondence, since θ belongs to
(−π/2, π/2)), then we have

du = cos θdθ.



2 PROBLEM SET 2

i.Show that, under this substitution, and by using the previously mentioned trigonometry

identity, the integral Q =
∫ π/4
0

sin2 θ
cos θ

dθ is transformed to

Q =

∫ √2/2
0

u2

1− u2
du.

ii.Evaluate the integral you found in part i by expanding its integrand using partial fractions:

u2

1− u2
= A+

B

1 + u
+

C

1− u
.

(Note: When you integrate
∫

(1− u)−1du, be careful with the negative sign!)

iii.Use the method of integration by parts, by taking u = sin θ, v =
1

2 cos2 θ
, to show that

R =

∫ π/4

0

sin2 θ

cos3 θ
dθ = sin θ · 1

2 cos2 θ

∣∣∣∣π/4
0

− 1

2

∫ π/4

0

1

cos θ
dθ

= sin θ · 1

2 cos2 θ

∣∣∣∣π/4
0

− 1

2
(P +Q).

iv. Finish up by finding the original integral, which is now, symbolically, P +Q+ R. Just
for you to check your answer, it should be consistent with the formula for the indefinite
integral ∫

1

cos3 θ
dθ =

sin θ

2 cos2 θ
+

1

4
ln

(
1 + sin θ

1− sin θ

)
+ c,

where c is an arbitrary constant.

I.11
2
. There is an alternative way to find the integral

∫ √
1 + x2 dx, that is, by substituting

using the hyperbolic trig. functions. Recall the definition

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
,

as well as several properties as one could easily verify:

cosh2 t− sinh2 t = 1,

d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t.

The property cosh2 t− sinh2 t = 1 motivates the term “hyperbolic”, as (cosh t, sinh t) always
lie on a branch of the hyperbola u2 − v2 = 1 in the u-v plane.
Now apply the substitution

x = sinh t

to the integral
∫ √

1 + x2 dx to show that it equals to

1

4
sinh 2t+

1

2
t+ c,

where t = sinh−1(x) (the “-1” indicates the inverse of a function, instead of the power of
sinhx) and c is an arbitrary constant.

I.2. An infinite product that approximates π can be found by studying the integrals

Im :=

∫ π/2

0

sinm x dx, m = 0, 1, 2, ...

using integration by parts.
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i. For m = 0, 1 each, evaluate the definite integral Im =
∫ π/2
0

sinm x dx.

ii. If m ≥ 2, one could write the integral Im as

Im =

∫ π/2

0

(sinx)m−1(sinx)dx.

Use integration by parts once to show that

Im =

∫ π/2

0

(m− 1)(sinx)m−2(cosx)2dx;

then, by writing cos2 x as 1− sin2 x, show that

Im =
m− 1

m
Im−2.

iii.(Reading) Let n denote sufficiently large positive integers. According to parts i and ii,
you should have,

I2n+1 =
2n

2n+ 1
· 2n− 2

2n− 1
· ... · 2

3
· 1,

I2n =
2n− 1

2n
· 2n− 3

2n− 2
· ... · 1

2
· π

2
.

In particular, since sinx ≤ 1 for x ∈ [0, π/2], we have

(sinx)2n+1 ≤ (sinx)2n ≤ (sinx)2n−1,

and thus
I2n+1 ≤ I2n ≤ I2n−1.

Dividing these inequalities by I2n+1 and using part ii, we have

1 ≤ I2n
I2n+1

≤ 2n+ 1

2n
.

Letting n→∞, one is forced to have

lim
n→∞

I2n
I2n+1

= 1.

On the other hand, I2n/I2n+1 is equal to

π

2

(
1 · 3
22
· 3 · 5

42
· ... · (2n− 1)(2n+ 1)

(2n)2

)
.

Combining facts above, we have

π

2
= lim

n→∞

22

1 · 3
· 42

3 · 5
· ... · (2n)2

(2n− 1)(2n+ 1)
.



Part II

II.1. We learned in class that the integral
∫∞
1

1
xp

converges if and only if p > 1. Now use a
comparison argument, without evaluating the integrals, to determine the convergence of the
following improper integrals:

(a)

∫ ∞
1

1√
x+ x2

, (b)

∫ ∞
1

3

(x5 + 4x3 + 2x+ 1)1/3
.

II.2. Supposing that
∫ 1

0
f ′(sinx) cosx dx = 10, and f(0) = 1, what’s the value of f(sin 1)?

II.3. Let f(x) be a continuous, increasing, concaving-down function defined on the interval
[0, 1]. Put the following quantities in increasing order:∫ 1

0

f(x)dx, LEFT(n), RIGHT(n), MID(n), TRAP(n).

II.4. Supposing that for a certain function f(x), you only know that it satisfies
∫ 2

1
f(x)dx =

8, is it possible to find each of the following integrals? What if you know in addition that
f(2) = 2, does your answer change?

(a)

∫ 9

3

x f(2x2 + 1)dx, (b)

∫ 2

1

(x− 1)f ′(x)dx.


