HOMEWORK QUIZ 1 SOLUTION

Due: Friday, Feb. 3

1. Supposing that A and B are two events in a random experiment. For each of the following two settings, determine whether A and B are independent, depend, or there is insufficient given information.
(1) $\mathbb{P}(A)=0.6, \mathbb{P}(B)=0.8$;
(2) $\mathbb{P}(A)=0.8, \mathbb{P}(B)=0.2, \mathbb{P}($ not A nor $B)=0.16$.

Solution. (1) There is not sufficient information, since $\mathbb{P}(A \cap B)$ is not given nor implied. (2) If you draw a diagram, you could notice that $\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)+\mathbb{P}($ not A nor $B)=$ 1. Applying the given numerical values gives $\mathbb{P}(A \cap B)=0.16$, which is equal to $\mathbb{P}(A) \mathbb{P}(B)$. Thus, by definition A and B are independent random events.
2. Assume that you are a game provider, the game being simply rolling a die once, then flipping a coin once. Both the die and the coin are fair. If the coin turns out "head", the gamer is rewarded x dollars, where x is the number showing on the die; otherwise, the gamer receives nothing. Write down the sample space. Let X be the random variable standing for the reward to the gamer after one game. What is the value of $\mathbb{E}[X]$? How much would you charge for each play in order to make an expected profit of $\$ 1$ per game?

Solution. Sample space:

$$
\{(1, H),(1, T),(2, H),(2, T),(3, H),(3, T),(4, H),(4, T),(5, H),(5, T),(6, H),(6, T)\} .
$$

The random variable takes values 0 with probability $1 / 2$, and $1,2,3,4,5,6$, each with nonzero probability $1 / 12$. Thus the expectation of X equals to

$$
\mathbb{E}[X]=0 \times \frac{1}{2}+(1+2+\ldots+6) \times \frac{1}{12}=\frac{7}{4}=1.75 .
$$

Thus you'll need to charge 2.75 dollars for each game for the desired profit.
3. For which values of x does the series $\sum_{n=1}^{\infty} e^{n x}=e^{x}+e^{2 x}+e^{3 x}+\ldots$ converge?

Solution. Note that this is a geometric series with $r=e^{x}$. Such a geometric series converges if and only if $|r|<1$. Now e^{x} could only take positive values, and $e^{x}<1$ if and only if $x<0$. We conclude that the given series converges if and only if $x<0$.
4. Given that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$, what is the limit of the series $\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=$ $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots$? Then, what is the limit of the series $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$?

Solution. In order, denote the terms of the three series given in question by a_{n}, b_{n}, c_{n}, respectively. We see that $b_{n}=\frac{1}{4} a_{n}$, and $c_{n}=a_{n}-b_{n}$. Therefore, by a fact on p. 167 of

CoursePack, we have

$$
\sum_{n=1}^{\infty} b_{n}=\frac{1}{4} \sum_{n=1}^{\infty} a_{n}=\frac{\pi^{2}}{24},
$$

and

$$
\sum_{n=1}^{\infty} c_{n}=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}=\frac{\pi^{2}}{8}
$$

5. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence of real numbers, that is, there exists a (finite) real number A, such that $\lim _{n \rightarrow \infty} a_{n}=A$. Show that the series $\sum_{n=1}^{\infty}\left(a_{n+1}-a_{n}\right)$ converges by analyzing the limiting behavior its N-th partial sum. What is the limit of this series? (Note: See, for example, what the series looks like when $a_{n}=\frac{1}{n}$, or when $a_{n}=7^{\frac{1}{n}}$, etc.)

Solution. Let $S_{N}=\sum_{n=1}^{N}\left(a_{n+1}-a_{n}\right)$. It is straight-forward calculation (noting the massive cancellations happening between terms that are next to each other) that

$$
S_{N}=a_{N+1}-a_{1} .
$$

Moreover, since $a_{n} \rightarrow A$ as $n \rightarrow \infty$, we have that

$$
\lim S_{N \rightarrow \infty} S_{N}=A-a_{1}
$$

Therefore, the original series converges to $A-a_{1}$.
6. Use the comparison test to show that the series $\sum_{n=2}^{\infty} \frac{5+\sqrt{n}}{n^{2}+1}$ converges.

Solution. Note that for all $n>25$, we have that $\sqrt{n}>5$; and $n^{2}+1>n^{2}$. Thus for all those n 's, we have

$$
\frac{5+\sqrt{n}}{n^{2}+1}<\frac{2 \sqrt{n}}{n^{2}}=\frac{2}{n^{3 / 2}} .
$$

Because the series $\sum_{n=1}^{\infty} \frac{2}{n^{3 / 2}}$ converges (as a p-series), and because each term of the original series is positive, we have that the original series converges, by the comparison test.
7. Use the integral test to show that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges.

Solution. Note that the terms of the given series $\frac{1}{n \ln n}$ equals to $f(n)$, where

$$
f(x)=\frac{1}{x \ln x}
$$

is positive-valued and decreasing for $x \geq 2$. Moreover,

$$
\int_{2}^{\infty} f(x) d x=\lim _{b \rightarrow \infty}\left(\left.\ln (\ln x)\right|_{2} ^{b}\right)=\infty
$$

By the integral test, the convergence of the given series must be the same as that of the integral $\int_{2}^{\infty} f(x) d x$, hence divergent.
8. What is the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{3}}{e^{n}}$?

Solution. By the ratio test, we have

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1}{e} \frac{(n+1)^{3}}{n^{3}}=\frac{1}{e}<1 .
$$

Therefore, the series converges.
9. What are the lower and upper bounds incurred by taking the first 10 terms of the convergent series $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}}$?

Solution. First note that the error incurred by taking S_{10} is precisely

$$
E_{10}=\sum_{n=11}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}} .
$$

Note that, corresponding to the series (with the integral test in mind), $f(x)=\frac{x}{\left(x^{2}+1\right)^{2}}$. Thus,

$$
\int_{11}^{\infty} f(x) d x \leq E_{10} \leq \int_{10}^{\infty} f(x) d x
$$

which, by using $\int f(x) d x=-\frac{1}{2} \frac{1}{x^{2}+1}$, gives

$$
\frac{1}{244}=-\left.\frac{1}{2} \frac{1}{x^{2}+1}\right|_{11} ^{\infty} \leq E_{10} \leq-\left.\frac{1}{2} \frac{1}{x^{2}+1}\right|_{10} ^{\infty}=\frac{1}{202}
$$

Bonus. Does the series $\sum_{n=1}^{\infty} \sin n$ converge? Give your reasoning.
Solution. No. For any positive integer k, and for any $n \in\left(2 k \pi+\frac{1}{6} \pi, 2 k \pi+\frac{5 \pi}{6}\right)$, we have $\sin n>\frac{1}{2}$. I show that there are infinitely many n such that there exists an k satisfying

$$
n \in\left(2 k \pi+\frac{1}{6} \pi, 2 k \pi+\frac{5 \pi}{6}\right) .
$$

For any k, there must exist a largest n that is less than $2 k \pi+\frac{1}{6} \pi$, then $n+1$ must lie in the interval $\left(2 k \pi+\frac{1}{6} \pi, 2 k \pi+\frac{5 \pi}{6}\right)$, since $\frac{4 \pi}{6}>1$. This shows that there are infinitely many n such that $\sin n>1 / 2$. By the n-th term test, the given series diverges.

Relevant text pages or hints:

1. CoursePack pp.140-141: independence of random events.
2. CoursePack p.145: random variables; coursePack p.153: expectation.
3. CoursePack p.163: geometric series.
4. CoursePack p.167: theorem 1.
5. CoursePack p 162: N-th partial sum; pp.163-164: "telescoping" series.
6. Note that for $n>25$, one has $5<\sqrt{n}$; also note that $1+n^{2}>n^{2}$.
7. Note that $\frac{d}{d x} \ln (\ln x)=\frac{1}{x \ln x} \quad(x>0)$.
8. Ratio test.
9. CoursePack pp. 178-179. Error bound with integral test.

Bonus. n-th term test, but you'll need to be able to convince yourself that, for example, $\sin n$ attains values $>\frac{1}{2}$ infinitely many times; this latter argument being a little outside the scope of the current course, but not impossible if you realize that $7-2 \pi \approx 0.72<2 \pi / 3$.

