HOMEWORK QUIZ 1

Due: Friday, Feb. 3

1. Supposing that A and B are two events in a random experiment. For each of the following two settings, determine whether A and B are independent, depend, or there is insufficient given information.
(1) $\mathbb{P}(A)=0.6, \mathbb{P}(B)=0.8$;
(2) $\mathbb{P}(A)=0.8, \mathbb{P}(B)=0.2, \mathbb{P}($ not A nor $B)=0.16$.
2. Assume that you are a game provider, the game being simply rolling a die once, then flipping a coin once. Both the die and the coin are fair. If the coin turns out "head", the gamer is rewarded x dollars, where x is the number showing on the die; otherwise, the gamer receives nothing. Write down the sample space. Let X be the random variable standing for the reward to the gamer after one game. What is the value of $\mathbb{E}[X]$? How much would you charge for each play in order to make an expected profit of $\$ 1$ per game?
3. For which values of x does the series $\sum_{n=1}^{\infty} e^{n x}=e^{x}+e^{2 x}+e^{3 x}+\ldots$ converge?
4. Given that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$, what is the limit of the series $\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}=$ $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots$? Then, what is the limit of the series $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$?
5. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a convergent sequence of real numbers, that is, there exists a (finite) real number A, such that $\lim _{n \rightarrow \infty} a_{n}=A$. Show that the series $\sum_{n=1}^{\infty}\left(a_{n+1}-a_{n}\right)$ converges by analyzing the limiting behavior its N-th partial sum. What is the limit of this series? (Note: See, for example, what the series looks like when $a_{n}=\frac{1}{n}$, or when $a_{n}=7^{\frac{1}{n}}$, etc.)
6. Use the comparison test to show that the series $\sum_{n=2}^{\infty} \frac{5+\sqrt{n}}{n^{2}+1}$ converges.
7. Use the integral test to show that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges.
8. What is the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{3}}{e^{n}}$?
9. What are the lower and upper bounds incurred by taking the first 10 terms of the convergent series $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}}$?
Bonus. Does the series $\sum_{n=1}^{\infty} \sin n$ converge? Give your reasoning.

Relevant text pages or hints:

1. CoursePack pp.140-141: independence of random events.
2. CoursePack p.145: random variables; coursePack p.153: expectation.
3. CoursePack p.163: geometric series.
4. CoursePack p.167: theorem 1.
5. CoursePack p 162: N-th partial sum; pp.163-164:"telescoping" series.
6. Note that for $n>25$, one has $5<\sqrt{n}$; also note that $1+n^{2}>n^{2}$.
7. Note that $\frac{d}{d x} \ln (\ln x)=\frac{1}{x \ln x}(x>0)$.
8. Ratio test.
9. CoursePack pp. 178-179. Error bound with integral test.

Bonus. n-th term test, but you'll need to be able to convince yourself that, for example, $\sin n$ attains values $>\frac{1}{2}$ infinitely many times; this latter argument being a little outside the scope of the current course, but not impossible if you realize that $7-2 \pi \approx 0.72<2 \pi / 3$.

