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I. Motivation
1. Cauchy-Riemann (CR):

⇢
ux � vy = 0

uy + vx = 0

@x(Eq.1) + @y(Eq.2) ) �u = 0

@x(Eq.2)� @y(Eq.1) ) �v = 0

Given any harmonic function u(x, y) (resp. v(x, y)),
substituting it in (CR), the system for v(x, y) (resp.
u(x, y)) is completely integrable (aka. Frobenius).
In particular, solutions can be found by solving
ODEs only).

e.g. u = x2 � y2 ) v = 2xy + C

(CR) is a way to ‘relate’ harmonic functions in 2
variables.

2. sine-Gordon Transformation (SGT):

⇢
ux � vx = � sin(u + v)

uy + vy = ��1 sin(u� v)

(� 6= 0 const.)

@y(Eq.1) + @x(Eq.2) ) uxy =
1
2 sin(2u)

@x(Eq.2)� @y(Eq.1) ) vxy =
1
2 sin(2v)

Given any u(x, y) (resp. v(x, y)) satisfying the
sine-Gordon (SG) Equation

zxy =
1
2 sin(2z),

substituting it in (SGT), the system for v(x, y) (resp.
u(x, y)) is completely integrable.

e.g. u = 0 ) v = arctan
�
C exp

���x� ��1y
��

(1-solitons)

(SGT) is a way to ‘relate’ solutions of (SG).



3. Pseudo-spherical Line Congruence (PSLC) in E3
:

Two immersions f, f ⇤ : U ,! E3 of a surface are said to admit a pseudo-spherical line congruence between
them if, for any p 2 U ⇢ R2 (assuming f (p) 6= f ⇤(p)),

• The straight line f (p)f ⇤(p) is tangent to both surfaces at f (p) and f ⇤(p), resp.;

• dE3(f (p), f ⇤(p)) = ` > 0 is a constant;

• The angle � between the normals n(p) and n⇤(p) is a constant in (0, ⇡).



Classical Bäcklund Theorem (Bianchi, Bäcklund, 1890s)
a) Two immersed surfaces S, S⇤ ⇢ E3 admit a pseudo-spherical line congru-
ence (with parameters ` and �) between them only if both S and S⇤ have
the negative constant Gauss curvature:

K = �sin2 �

`2

b) For any immersed surface S ⇢ E3 with a negative constant Gauss cur-
vature K = �`�2sin2 � (for some fixed ` > 0, � 2 R), one can construct, by
solving ODEs only, a 1-parameter family of S⇤ ⇢ E3 such that S and S⇤ are
related by a pseudo-spherical line congruence with parameters ` and �



Classical Bäcklund Theorem — A Closer Look

F : (oriented) orthonormal frame bundle of E3

✓
1 0 0 0
x e1 e2 e3

◆
2 F ⇢ SL(4,R)

x, ei 2 R3; ei · ej = �ij

dx = ei!
i

dei = ej!
j
i

surface with e3 as normal , !3 = 0

Pseudo-spherical Line Congruence:

• can choose e1 s.t.
�!
xx⇤ = `e1

•

8
>><

>>:

x⇤ = x + `e1

e⇤
1 = e1

e⇤
2 = e2 cos � + e3 sin �

e⇤
3 = �e2 sin � + e3 cos �

• (PSLC) !3 = !⇤3 = 0



(PSLC): !3 = !⇤3 = 0

(solutions are immersed surfaces in F)

!3 = 0

!⇤3 = 0

d!3 = 0

d!⇤3 = 0

9
>>>=

>>>;
)

8
>><

>>:

!1
3 ^ !2

3 = �sin2 �

`2
!1 ^ !2

!⇤1
3 ^ !⇤2

3 = �sin2 �

`2
!⇤1 ^ !⇤2

i.e. K = K⇤ = �sin2 �

`2

On the other hand, if ◆ : U ,! M ⇠= R3 ⇥ S2
satisfies

!3 = 0

⌥2 +
sin2 �

`2
⌥0 = 0

(This is the equation for K = � sin2 �/`2.)

then, restricted to ⇡�1(◆(U)), the system (PSLC)
is completely integrable.

Note:

⇡�1(◆(U)) F6 (x;e1,e2,e3)

U M5 (x,e3)

⇢ 3
⇡

◆ 3
For an immersed surface U ,! M with e3 being
the unit normal, on U ,

⌥0 :=
1

2
e3 · (dx ⇥ dx) = !1 ^ !2

⌥1 :=
1

2
e3 · (de3 ⇥ dx) = �H!1 ^ !2

⌥2 :=
1

2
e3 · (de3 ⇥ de3) = !1

3 ^ !2
3 = K!1 ^ !2

where H , K are the mean curvature and the Gauss
curvature, resp.



In the 3 examples above...

B E1 E2
(CR) �u = 0 �v = 0

(SGT) (SG) (SG)
(PSLC) (K = �`�2 sin2 �) (K = �`�2 sin2 �)

B

E1 E2

• Ei (i = 1, 2) arise as integrability conditions of B;

• Given any solution of E1 (resp. E2), substituting it in B, we obtain a completely integrable system
whose solutions satisfy E2 (resp. E1).
Classically, (B; E1, E2) is called a Bäcklund transformation relating solutions of PDE systems E1 and E2.
(If) E1 and E2 are contact equivalent ‘auto-Bäcklund transformation’



II. A Brief History

1883 classical Bäcklund Theorem; Bäcklund, Bianchi, Darboux, É.Cartan ...

1909 Tzitzeica equation (affine geometry) and the Tzitzeica transformation

1925 E. Goursat proposing/studying the Bäcklund problem:

Find all pairs of PDE systems whose solutions are related by a Bäcklund transformation.

1960 – more examples (e.g., auto-Bäcklund for KdV/Wahlquist, Estabrook, 1973)

affine analogue of the classical theorem/Chern, Terng, 1980

higher-dimensional generalization of the classical theorem/Tenenblat, Terng, 1980

soliton theory, integrable systems, loop groups (e.g., paper by Terng, Uhlenbeck, 2000)

2000 – geometric view using Exterior Differential Systems (Clelland, Ivey, I.M.Anderson, Fels ...)

Books include:

R. L. Anderson, N. H. Ibragimov, SIAM, 1979

C. Rogers, W. F. Schadwick, Academic Press, 1982

C. Rogers, W. K. Schief, Cambridge University Press, 2002



III. Geometric Formulation
Exterior Differential System (EDS)
(ref. book by Bryant et al.)

Def. An EDS is a pair (M, I):
• M : smooth manifold

• I: ideal in ⌦⇤(M) closed under d

Example 1

PDE zxy = sin z

EDS (M, I)
M = J1(R2,R)

coordinates: (x, y, z, p, q)

I = hdz � pdx� qdy,
dx ^ dp + dy ^ dq,
(dp� sin z dy) ^ dxialg

Def. Given an EDS (M, I), an integral manifold
is an immersed

� : U ! M

such that �⇤(I) = 0.

Example 2 (K = �1 system)

M = R3 ⇥ S2 3 (x, e3) !3 := dx · e3

I = h!3, d!3,⌥2 + ⌥0ialg
Theorem (Frobenius)

(M, I) where I is locally algebraically generated
by k linearly independent 1-forms ✓1, ..., ✓k

+
There exist (by solving ODEs) local coordinates
(x1, ..., xn�k, y1, ..., yk) such that I = hdy1, ..., dykialg
(or: ‘the distribution defined by ✓i = 0 is completely

integrable’, ‘locally M is foliated by a k-parameter

family of integral manifolds’, etc.)



Integrable Extension

Def. An integrable extension of an EDS (Mn, I)
is an EDS (N,J ) with a submersion:

⇡ : (Nn+k,J ) ! (Mn, I)
satisfying: locally 9 1-forms ✓1, ..., ✓k on N , s.t.

J = h⇡⇤I, ✓1, ..., ✓kialg
{✓1, ..., ✓k}? \ ker(⇡⇤) = 0 (transversality)

Remark

a) if S ⇢ M is an integral manifold, then J |⇡�1S

is (rank-k) Frobenius

b) restricting to each integral manifold of J , ⇡ is
an immersion, the image being an integral man-
ifold of (M, I)
(or: ‘J pulls back to each such ⇡�1S to define a flat

connection’)



Bäcklund Transformation

Def. A Bäcklund transformation (BT) relating two EDS (Mi, Ii) (i = 1, 2) is a quadruple (N,B; ⇡1, ⇡2) :

(N,B)

(M1, I1) (M2, I2)

⇡1 ⇡2

where both ⇡1 and ⇡2 are integrable extensions.

More terminology

A BT is ...

• rank-k if dim(M1) = dim(M2) = n and dim(N) = n + k

• homogeneous if the symmetry group of (N,B) acts (locally) transitively on N



IV. Classification and Generality
Assumptions

• (N,B; ⇡1, ⇡2) has rank-1

• Both (Mi, Ii) (i = 1, 2) are hyperbolic Monge-Ampère (in the plane)

Hyperbolic Monge-Ampère (MA) Systems

PDE EDS
MA A(uxxuyy � u2xy) + Buxx + 2Cuxy +Duyy + E = 0 (M 5, I)

A,B, ..., E functions in x, y, u, ux, uy I = h✓, d✓,�ialg
✓ contact form,� 2 ⌦2(M)

Hyperbolic AE � BD + C2 > 0 (�d✓ + µ�)2 ⌘ 0 mod ✓
has two distinct sol. [� : µ] 2 RP1

Examples

uxy = F (x, y, u, ux, uy) M = R3 ⇥ S2, K = �1 in E3

uxxuyy � u2xy = �1 M = R3 ⇥H2, timelike K = 1 in E2,1

· · · · · ·



Theorem (Clelland, 2001)

Up to diffeomorphism, a homogeneous rank-1 Bäcklund transformation relating two hyperbolic Monge-
Ampère systems belongs to one of the following 15 cases (in Clelland’s numbering):

(1) auto-BT of zxy = 0

(2) degenerate case

(3) between zxy = exp(z) and zxy = 0

(15) auto-BT between certain surfaces in some M 5 = SO⇤(4)/ ⇠
The rest are auto-BT relating surfaces in certain 3D Riemannian/Lorentzian space forms, where all
prescribed curvatures are constants:

(4) K < 0 E3 (7) spacelike K > 0 E2,1 (11) timelike K > 1 S2,1

(5) 0 < K < 1 S3 (8) timelike K > 0 E2,1 (12) spacelike K > �1, 6= 0 H2,1

(6) K < �1 H3 (9) timelike H = 0 E2,1 (13) timelike |H| > 1 H2,1

(10) spacelike K > 1 S2,1 (14) timelike |H|  1 H2,1

Question: Without assuming homogeneity, how general are the rank-1 Bäcklund
transformations being considered?



Main Theorem (H–, 2018)

A generic rank-1 BT relating two hyperbolic MA systems can be uniquely determined
(up to diffeomorphism) by specifying at most 6 functions of 3 variables.

Corollary

There exist hyperbolic MA systems that are not related to any hyperbolic MA system
by a generic rank-1 BT.

Proof of Corollary. To uniquely specify a hyperbolic MA system up to diffeomorphism,
one needs 3 functions of 5 variables, which is much more than the data needed to
specify a generic rank-1 BT being considered.

Open Question. Given an arbitrary hyperbolic MA system, decide whether it admits
a ‘rank-1 Bäcklund pair’.



Outline of Proof

(N,B)

(M1, I1) (M2, I2)

⇡1 ⇡2

(Mi, Ii) hyperbolic MA

(N,B; ⇡1, ⇡2) rank-1 ) dimN = 6

Step 1. all information is contained in (N,B)
(N,B) is a rank-1 BT , N admits local cofram-
ings of a certain type

Step 2. admissible coframes form a G-structure
G associated to (N,B)
Step 3. assuming genericity, obtain local invari-
ants of of the G-structure

Step 4. apply É.Cartan’s generalization of Lie’s
3rd theorem ) the generality bound

G-structure (Step 2)

GL(6,R) F

N 6

⇡

G G14 F

N 6

⇢
⇡

F : the coframe bundle of N

Fp 3 u = (⌘1, ..., ⌘6)T : TpN
⇠=�! R6

G ⇢ GL(6,R) subgroup consisting of

g =

0

BB@

det(B) 0 0 0
0 det(A) 0 0
0 0 A 0
0 0 0 B

1

CCA

A = (aij), B = (bij) 2 GL(2,R)
Tautological 1-form on G:

! := (!1,!2, ...,!6)T



G-structure Equations (Step 2, cont.) (Clelland, 2001)

d

0

BBBBBB@

!1

!2

!3

!4

!5

!6

1

CCCCCCA
= �

0

BBBBBB@

�0 0 0 0 0 0
0 ↵0 0 0 0 0
0 0 ↵1 ↵2 0 0
0 0 ↵3 ↵0 � ↵1 0 0
0 0 0 0 �1 �2
0 0 0 0 �3 �0 � �1

1

CCCCCCA
^

0

BBBBBB@

!1

!2

!3

!4

!5

!6

1

CCCCCCA

+

0

BBBBBB@

A1(!
3 � C1!

1) ^ (!4 � C2!
1) + !5 ^ !6

!3 ^ !4 + A4(!
5 � C3!

2) ^ (!6 � C4!
2)

B1!
1 ^ !2 + C1!

5 ^ !6

B2!
1 ^ !2 + C2!

5 ^ !6

B3!
1 ^ !2 + C3!

3 ^ !4

B4!
1 ^ !2 + C4!

3 ^ !4

1

CCCCCCA
(A1, A4 6= 0;A1A4 6= 1)

A1(u · g) = det(A)

det(B)
A1(u) A4(u · g) = det(B)

det(A)
A4(u)

✓
B1

B2

◆
(u · g) = det(AB)A�1

✓
B1

B2

◆
(u)

✓
B3

B4

◆
(u · g) = det(AB)B�1

✓
B3

B4

◆
(u)

✓
C1

C2

◆
(u · g) = det(B)A�1

✓
C1

C2

◆
(u)

✓
C3

C4

◆
(u · g) = det(A)B�1

✓
C3

C4

◆
(u)



Generic Case (Step 3)

Lemma. (H–)

Seeing G as acting on R10 (A1, A4, Bi, Ci), the maximal dimension of a G-orbit is 8. Such maximal
orbits, respectively, contain

✓
B1 C1

B2 C2

◆
=

✓
✏1 0
0 1

◆
,

✓
B3 C3

B4 C4

◆
=

✓
✏2 0
0 1

◆
,

where ✏i = ±1 (i = 1, 2).

Def. (N,B) is called generic if one of such maximal orbits is attained.

In the generic case, normalize Bi, Ci to one of the 4 cases above.

) e-structure

• e-structrue has 42 local invariants, including A1, A4

• compatibility condition d2 = 0 ) 24 local invariants (as far as my calculation goes)



Cartan’s Theorem (Step 4)

(ref. Bryant 2014 Notes on EDS, arXiv:1405.3116)

Cartan’s generalization of Lie’s 3rd theorem allows one to answer the question:

Do there exist linearly independent 1-forms !1, ...,!n on Mn and functions

a = (a↵) : M ! Rs, b = (b⇢) : M ! Rr

such that
d!i = �1

2
Ci

jk(a)!
j ^ !k, da↵ = F ↵

i (a, b)!
i,

where Ci
jk = �Ci

kj : Rs ! R and F ↵
i : Rs+r ! R are given and analytic?

In our situation, a↵ are the invariants associated to the e-structure.

• Last Cartan character: s3 = 6

• Involutive?
No ) ‘at most’ 6 functions of 3 variables

Note: Involutivity can be attained, according to Cartan-Kuranishi, if we further ‘prolong’ the struc-
ture equations. However, one would encounter an enormous amount calculation.



V. New Classification Results and Examples
Assumptions

A1) the generic case

A2) A1, A4, Bi, Ci take value in the G-orbit with ✏1 = ✏2 = 1

A3) A1 = 1 and A4 = �1

Results

Theorem (H–, 2018)

A rank-1 BT satisfying the assumptions A1)-A3) can be uniquely determined by specifying 1 function
of 2 variables, up to diffeomorphism.

Rmk. The proof is similar to that of the Main Theorem. Here, the structure equations are involutive
with the last Cartan character s2 = 1.

In fact, A1)-A3) ) 2 subcases

Case 1: homogeneous case

in Clelland’s classification: (13) H > 1 in H2,1, (14) 0 < H  1 in H2,1 and (15)



Case 2: higher cohomogeneity

Proposition. (H–)

If (N,B) is a rank-1 BT satisfying A1)-A3), then there exists a canonical map

� = (R, S, T ) : N ! R3

satisfying: � has

• rank 1 , 2RS = 1 and T = R2 + S2

• rank 2 , not rank-1 and
✓
2RS = 1 or

⇢
T4 = (R + S)(T � 1)
T6 = (R� S)(T + 1)

◆

(Note: dT = Ti!
i)

• rank 3 , neither rank-1 nor rank-2

Next, we’ll focus on the rank-1 case and the highlighted rank-2 case.



Theorem. (H–, 2018) When � has rank 1, (N,B)

i) is of cohomogeneity-1

ii) is an auto-BT of the hyperbolic MA equation

(A2 � B2)(zxx � zyy) + 4ABzxy = 0

where A = 2zx + y and B = 2zy � x

iii) has Lie algebra of symmetry h

dim(h) = 5

h solvable and not nilpotent
derived series has dim. (5, 3, 1, 0, ...)

h is isomorphic to the Lie algebra generated by the real and imaginary parts of

@w, e2w(@z + iz̄@�), e2(w+w̄)@�

on R⇥ C2 3 (�, z, w)



Theorem. (H–, 2018) When � has rank 2 and
⇢
T4 = (R + S)(T � 1)
T6 = (R� S)(T + 1)

i) the image of � is contained in a surface de-
fined by [R2 + S2 � T : 2RS � 1] = const. 2 RP1

((N,B) has cohomogeneity-2)

ii) (N,B) has Lie algebra of symmetry

q

⇠=
8
<

:

so(3)� R if R2 + S2 < T
sl(2,R)� R if R2 + S2 > T
g� R if R2 + S2 = T

where g is the solvable 3-dimensional Lie
algebra with basis {x1, x2, x3} satisfying

[x3, x1] = x2, [x2, x3] = x1, [x1, x2] = 0

iii) when R2 + S2 ⌘ T , (N,B) is an auto-BT of
the equation

(A2�B2)(zxx�zyy)+4ABzxy+✏(A2+B2)2 = 0

where A = zx � y, B = zy + x; and ✏ = ±1


