Absolute Equivalence: after Cartan and Sluis

(based on joint work with Jeanne N. Clelland)

JMM 2020, Denver

Yuhao Hu
University of Colorado Boulder

1/9. The Hilbert-Cartan ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\right)^{2}
$$

As a Pfaffian system (M, I)

$$
\begin{gathered}
M=\mathbb{R}^{5} \ni(x, y, t, u, v)=\left(x, y, t, y^{\prime}, y^{\prime \prime}\right) \\
I=\llbracket \mathrm{d} y-u \mathrm{~d} t, \quad \mathrm{~d} u-v \mathrm{~d} t, \quad \mathrm{~d} x-v^{2} \mathrm{~d} t \rrbracket \subset T^{*} M
\end{gathered}
$$

Theorem (Hilbert, 1912) One cannot express the general solutions of (\star) in the form

$$
\left\{\begin{array}{l}
t=T\left(\alpha, g, \frac{\mathrm{~d} g}{\mathrm{~d} \alpha}, \ldots, \frac{\mathrm{~d}^{k} g}{\mathrm{~d} \alpha^{k}}\right) \\
x=X\left(\alpha, g, \frac{\mathrm{~d} g}{\mathrm{~d} \alpha}, \ldots, \frac{\mathrm{~d}^{k} g}{\mathrm{~d} \alpha^{k}}\right) \\
y=Y\left(\alpha, g, \frac{\mathrm{~d} g}{\mathrm{~d} \alpha}, \ldots, \frac{\mathrm{~d}^{k} g}{\mathrm{~d} \alpha^{k}}\right)
\end{array}\right.
$$

T, X, Y determined functions; $g(\alpha)$ arbitrary function in α.

2/9. Sometimes you can ...

ODE

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=1
$$

General solutions

$$
\left\{\begin{array}{l}
t=g^{\prime \prime}(\alpha)+g(\alpha) \\
x=g^{\prime \prime}(\alpha) \cos \alpha+g^{\prime}(\alpha) \sin \alpha \\
y=g^{\prime \prime}(\alpha) \sin \alpha-g^{\prime}(\alpha) \cos \alpha
\end{array}\right.
$$

...but when?

Given an ODE/system whose solutions depend on one function, how to tell whether its general solutions can be expressed in a determined way (in terms of one arbitrary function of one variable and its derivatives)? (Hilbert's question)

3/9. É. Cartan (1914) - The corank 2 case

(M, I) : Pfaffian system with a degree- 1 independence condition
Definition. A Cartan prolongation of (M, I) is a system (N, J) with a submersion

$$
\pi: N \rightarrow M
$$

such that
(1) $\pi^{*} I \subset J$
(2) any generic integral curve of (M, I) admits a unique lifting to be an integral curve of (N, J)

Cartan (1914) noticed: when $\operatorname{dim}(M)-\operatorname{rank}(I)=2 \ldots$
i. any Cartan prolongation is a succession of total prolongations
ii. a total prolongation is 'cancelled' by computing the first derived system
e.g.

$$
\llbracket \mathrm{d} g-w \mathrm{~d} t \rrbracket \xrightarrow{\operatorname{pr}^{(1)}(\cdots)} \llbracket \mathrm{d} g-w \mathrm{~d} t, \mathrm{~d} w-v \mathrm{~d} t \rrbracket \xrightarrow{(\cdots)^{(1)}} \llbracket \mathrm{d} g-w \mathrm{~d} t \rrbracket
$$

4/9. Absolute equivalence

Definition. Two systems (M, I) and (\bar{M}, \bar{I}) are absolutely equivalent if there exists a system (N, J) and the following diagram in which π and $\bar{\pi}$ are both Cartan prolongations.

Hilbert's question rephrased: When is a system (M, I) absolutely equivalent to $\llbracket \mathrm{d} g-w \mathrm{~d} t \rrbracket$ on \mathbb{R}^{3} ?
Cartan's idea: In the corank 2 case, by successively computing the derived systems, one can turn a system into one that's not the result of any total prolongation, called the associated normal system.

Theorem (Cartan, 1914) Two corank 2 systems are absolutely equivalent if and only if their normal systems are contact equivalent.

$$
\text { "The corank } k \geq 3 \text { case is difficult." }
$$

5/9. W. Sluis (1994) - Extension theorem

Prolongation by differentiation

e.g.

$$
I=\llbracket \mathrm{d} x-u \mathrm{~d} t, \mathrm{~d} y-v \mathrm{~d} t, \mathrm{~d} z-\left(u^{2}+v^{2}\right) \mathrm{d} t \rrbracket \rightsquigarrow \llbracket I, \mathrm{~d} u-w \mathrm{~d} t \rrbracket=J
$$

Theorem (Sluis, 1994) Given any Cartan prolongation $\pi:(N, J) \rightarrow(M, I)$, one can construct a commutative diagram of the following form,

where $\pi_{K, 0}$ stands for the K-th total prolongation, and $\hat{\pi}$ is a succession of prolongations by differentiation.

6/9. The corank 3 case

$\pi:(N, J) \rightarrow(M, I)$ Cartan prolongation. Determine the relative extensions I_{k} by

$$
\left\{\begin{aligned}
I_{0} & =\pi^{*} I \\
I_{k+1} & =\mathcal{C}\left(I_{k}\right) \cap J, \quad k=0,1, \ldots
\end{aligned}\right.
$$

where $\mathcal{C}(\cdots)$ stands for the retraction system (vector bundle).
In general, $I_{k} \subset I_{k+1}$ needs not induce a Cartan prolongation.

Theorem (Clelland and $\mathrm{H}-$, 2019)
$\left\{\begin{array}{l}(M, I) \text { system of corank } 3 \\ \pi:(N, J) \rightarrow(M, I) \text { a succession of } \\ \text { prolongations by differentiation }\end{array}\right\} \Rightarrow\left\{\begin{array}{l}I_{0} \subseteq \cdots \subseteq I_{k} \subseteq I_{k+1} \subseteq \cdots \text { stabilizes at } J \\ I_{0} \subseteq \cdots \subseteq I_{k} \subseteq \cdots \subseteq J \text { represents a number } \\ \text { of total prolongations, if any, followed by } \\ \text { rank-1 prolongations by differentiation }\end{array}\right\}$

7/9. Systems of control type (CTS)

Definition. A system (M, I) with independence condition $\tau=\mathrm{d} t$ is called a system of control type (CTS) if $\llbracket I, \tau \rrbracket$ is Frobenius.

Note.
(1) Locally, one can choose coordinates to put a CTS in the form

$$
I=\llbracket \mathrm{d} x^{i}-f^{i}(\boldsymbol{x}, \boldsymbol{u}, t) \mathrm{d} t \rrbracket_{i=1}^{n}
$$

(2) A corank 2 system is always a CTS.

Lemma (Sluis, 1994) A CTS $(M, I ; \tau)$ is controllable and linear (that is, it can be put in a Brunovský normal form by a coordinate-change) if and only if
i. $I^{(\infty)}=0$
ii. each $\llbracket I^{(k)}, \tau \rrbracket$ is Frobenius

8/9. Dynamic feedback linearization

Question: Which CTS are absolutely equivalent to a controllable, linear CTS?

Theorem (Clelland and $\mathrm{H}-$, 2019) A corank 3 CTS ($M, I ; \mathrm{d} t$) is absolutely equivalent ${ }^{1}$ to a controllable, linear CTS if and only if it admits a Cartan prolongation

$$
\pi:(N, J ; \mathrm{d} t) \rightarrow(M, I ; \mathrm{d} t),
$$

where
i. $(N, J ; \mathrm{d} t)$ is a controllable, linear CTS
ii. each $I_{k} \subsetneq I_{k+1}$ represents a rank-1 prolongation by differentiation

Let $K:=\operatorname{rank}(J)-\operatorname{rank}(I)$.
Question: Fixing ($M, I ; \mathrm{d} t$), what is the minimum integer K that allows a Cartan prolongation as described in the theorem to exist? ($K=0$ means that ($M, I ; \mathrm{d} t$) is already controllable and linear.)

[^0]9/9. Classification when $\operatorname{dim}(M)=6$ and $\operatorname{rank}(I)=3$

$$
K=\mathbf{1}
$$

$$
\left.\begin{array}{l}
\mathfrak{A}_{[1,1]}:\left\{\begin{array}{l}
\mathrm{d} z-p \mathrm{~d} x, \\
\mathrm{~d} x-v \mathrm{~d} t, \\
\mathrm{~d} p-w \mathrm{~d} t
\end{array}\right\} \\
\mathfrak{A}_{[1,2]}:\left\{\begin{array}{l}
\mathrm{d} z-p \mathrm{~d} x, \\
\mathrm{~d} p-v \mathrm{~d} x, \\
\mathrm{~d} x-w \mathrm{~d} t
\end{array}\right\}
\end{array}\right\}
$$

9/9. Classification when $\operatorname{dim}(M)=6$ and $\operatorname{rank}(I)=3$
$K=\mathbf{2}$
precisely when there exists a coframing $\left(\theta^{1}, \ldots, \theta^{5}, \tau\right)$ such that $I=\llbracket \theta^{1}, \theta^{2}, \theta^{3} \rrbracket$ and \ldots

$$
\mathfrak{A}_{[3,1,1,3]}: \begin{cases}\mathrm{d} \theta^{1} \equiv \tau \wedge \theta^{4}+\theta^{2} \wedge\left(Q_{1} \theta^{3}+Q_{2} \theta^{4}\right) & \bmod \theta^{1}, \\ \mathrm{~d} \theta^{2} \equiv \theta^{1} \wedge \theta^{5}+\theta^{3} \wedge \theta^{4} & \bmod \theta^{2}, \\ \mathrm{~d} \theta^{3} \equiv \tau \wedge \theta^{5} & \bmod \theta^{3}\end{cases}
$$

$$
\mathfrak{A}_{[3,1,2,3]}: \begin{cases}\mathrm{d} \theta^{1} \equiv \tau \wedge \theta^{4}+\theta^{3} \wedge \theta^{5}+\theta^{2} \wedge\left(Q_{1} \theta^{3}+Q_{2} \theta^{4}+Q_{3} \theta^{5}\right) & \bmod \theta^{1} \\ \mathrm{~d} \theta^{2} \equiv \theta^{1} \wedge \theta^{5}+\theta^{3} \wedge \theta^{4} & \bmod \theta^{2} \\ \mathrm{~d} \theta^{3} \equiv \tau \wedge \theta^{5} & \bmod \theta^{3}\end{cases}
$$

9/9. Classification when $\operatorname{dim}(M)=6$ and $\operatorname{rank}(I)=3$

$$
K=\mathbf{3}
$$

$$
\begin{aligned}
& \mathfrak{A}_{[2,1,2]}:\left\{\begin{array}{l}
\mathrm{d} z-y \mathrm{~d} x, \\
\mathrm{~d} y-w \mathrm{~d} x, \\
\mathrm{~d} w-p \mathrm{~d} t-f(x, y, z, w, t) \mathrm{d} x
\end{array}\right\} \\
& \mathfrak{A}_{[3,1,1,2]}: \begin{cases}\mathrm{d} \theta^{1} \equiv \tau \wedge \theta^{4}+\theta^{2} \wedge\left(Q_{1} \theta^{3}+Q_{2} \theta^{4}\right) & \bmod \theta^{1}, \\
\mathrm{~d} \theta^{2} \equiv \theta^{1} \wedge \theta^{5}+\theta^{3} \wedge \theta^{4} & \bmod \theta^{2}, \\
\mathrm{~d} \theta^{3} \equiv\left(\theta^{2}+\tau\right) \wedge \theta^{5} & \bmod \theta^{3} .\end{cases} \\
& \mathfrak{A}_{[3,1,2,2]}: \begin{cases}\mathrm{d} \theta^{1} \equiv \tau \wedge \theta^{4}+\theta^{3} \wedge \theta^{5}+\theta^{2} \wedge\left(Q_{1} \theta^{3}+Q_{2} \theta^{4}+Q_{3} \theta^{5}\right) & \bmod \theta^{1}, \\
\mathrm{~d} \theta^{2} \equiv \theta^{1} \wedge \theta^{5}+\theta^{3} \wedge \theta^{4} \\
\mathrm{~d} \theta^{3} \equiv\left(\theta^{2}+\tau\right) \wedge \theta^{5} & \bmod \theta^{2},\end{cases}
\end{aligned}
$$

9/9. Classification when $\operatorname{dim}(M)=6$ and $\operatorname{rank}(I)=3$
$K=4$
Not a classification yet, but we have existence.

Example.

$$
\left\{\begin{array}{l}
\mathrm{d} x-u \mathrm{~d} t \\
\mathrm{~d} y-\left(u v+x\left(z-x v^{2}\right)\right) \mathrm{d} t \\
\mathrm{~d} z-\left(u v^{2}+x(y-x v)\right) \mathrm{d} t
\end{array}\right\}
$$

$K \geq 5$ still mysterious
Necessary condition for a finite K : When you write $I=\llbracket \mathrm{d} x^{i}-f^{i}(\boldsymbol{x}, \boldsymbol{u}, t) \mathrm{d} t \rrbracket$, for each fixed \boldsymbol{x}, t

$$
\left(u^{1}, u^{2}\right) \mapsto \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t) \in \mathbb{R}^{3}
$$

must parametrize a rulled surface. (Pomet, 2009)
Either this condition is not sufficient or
there exists a CTS with finite minimum $K \geq 5$, or both. (Clelland and $\mathrm{H}-$, 2019)

References

- É. Cartan (1914)

Sur l'équivalence absolue de certains systemes d'équations différentielles et sur certaines familles de courbes

- W. Sluis (1994)

Absolute equivalence and its applications to control theory (thesis)

- J.-B. Pomet (2009)

A necessary condition for dynamic equivalence

Thank you!

[^0]: ${ }^{1} . .$. in a way that the independence conditions match each other.

