Shapes of Constant Width and Beyond

Sept. 18, 2019 - Math Club, CU Boulder

Yuhao Hu
University of Colorado Boulder

A. 50 Pence

A. 50 Pence

A. 50 Pence

A. 50 Pence
\longrightarrow pull

B. Manhole Cover

B. Manhole Cover

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon ...)

C. Ruler-Compass Construction (Starting with a regular $(2 n+1)$-gon \ldots)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon ...)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon ...)

Reuleaux Triangle

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon \ldots)

C. Ruler-Compass Construction (Starting with a regular $(2 n+1)$-gon \ldots)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon ...)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon \ldots)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon \ldots)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon ...)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon ...)

C. Ruler-Compass Construction (Starting with a regular ($2 n+1$)-gon \ldots)

D. Ruler-Compass Construction (Removing corners ...)

D. Ruler-Compass Construction (Removing corners ...)

D. Ruler-Compass Construction (Removing corners ...)

D. Ruler-Compass Construction (Removing corners ...)

D. Ruler-Compass Construction (Removing corners ...)

D. Ruler-Compass Construction (Removing corners ...)

E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$a>b>c$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$\mathrm{a}>\mathrm{b}>\mathrm{C}$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$\mathrm{a}>\mathrm{b}>\mathrm{C}$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$a>b>c$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$a>b>c$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$a>b>c$

E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$\mathrm{a}>\mathrm{b}>\mathrm{c}$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$\mathrm{a}>\mathrm{b}>\mathrm{C}$

E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$\mathrm{a}>\mathrm{b}>\mathrm{C}$

E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$\mathrm{a}>\mathrm{b}>\mathrm{C}$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$a>b>c$
E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

$a>b>c$

E. Ruler-Compass Construction (From any triangle with sides $a>b>c \ldots$)

F. Strictly Convex Regions in \mathbb{R}^{2}

Definition. Given a region $\mathcal{K} \subset \mathbb{R}^{2}$, it is said to be convex if the line segment connecting any two points $p, q \in \mathcal{K}$ remains entirely in \mathcal{K}, and it is said to be strictly convex if, for any two points $p, q \in \mathcal{K}$ the interior of the line segment connecting p, q lives entirely in the interior of \mathcal{K}.

F. Strictly Convex Regions in \mathbb{R}^{2}

Definition. Given a region $\mathcal{K} \subset \mathbb{R}^{2}$, it is said to be convex if the line segment connecting any two points $p, q \in \mathcal{K}$ remains entirely in \mathcal{K}, and it is said to be strictly convex if, for any two points $p, q \in \mathcal{K}$ the interior of the line segment connecting p, q lives entirely in the interior of \mathcal{K}.

F. Strictly Convex Regions in \mathbb{R}^{2}

Definition. Given a region $\mathcal{K} \subset \mathbb{R}^{2}$, it is said to be convex if the line segment connecting any two points $p, q \in \mathcal{K}$ remains entirely in \mathcal{K}, and it is said to be strictly convex if, for any two points $p, q \in \mathcal{K}$ the interior of the line segment connecting p, q lives entirely in the interior of \mathcal{K}.

F. Strictly Convex Regions in \mathbb{R}^{2}

Definition. Given a region $\mathcal{K} \subset \mathbb{R}^{2}$, it is said to be convex if the line segment connecting any two points $p, q \in \mathcal{K}$ remains entirely in \mathcal{K}, and it is said to be strictly convex if, for any two points $p, q \in \mathcal{K}$ the interior of the line segment connecting p, q lives entirely in the interior of \mathcal{K}.

G. The Support Function $p(\theta)$

$$
\begin{aligned}
p(\theta) & =(x(\theta), y(\theta)) \cdot(\sin \theta,-\cos \theta) \\
& =x(\theta) \sin \theta-y(\theta) \cos \theta
\end{aligned}
$$

H. From $p(\theta)$ to $(x(\theta), y(\theta))$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K}, the support function $p(\theta)$ is C^{1} (i.e. continuously differentiable). Moreover, we have

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)} .
$$

H. From $p(\theta)$ to $(x(\theta), y(\theta))$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K}, the support function $p(\theta)$ is C^{1} (i.e. continuously differentiable). Moreover, we have

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)} .
$$

Idea: Let

$$
\mathbf{x}(\theta):=\binom{x(\theta)}{y(\theta)}, \quad \mathbf{u}:=\binom{\sin \theta}{-\cos \theta} .
$$

H. From $p(\theta)$ to $(x(\theta), y(\theta))$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K}, the support function $p(\theta)$ is C^{1} (i.e. continuously differentiable). Moreover, we have

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)} .
$$

Idea: Let

$$
\mathbf{x}(\theta):=\binom{x(\theta)}{y(\theta)}, \quad \mathbf{u}:=\binom{\sin \theta}{-\cos \theta} .
$$

We have

$$
p=\mathbf{u}^{T} \mathbf{x}
$$

H. From $p(\theta)$ to $(x(\theta), y(\theta))$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K}, the support function $p(\theta)$ is C^{1} (i.e. continuously differentiable). Moreover, we have

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)} .
$$

Idea: Let

$$
\mathbf{x}(\theta):=\binom{x(\theta)}{y(\theta)}, \quad \mathbf{u}:=\binom{\sin \theta}{-\cos \theta} .
$$

We have

$$
p=\mathbf{u}^{T} \mathbf{x} .
$$

If we can show that p is differentiable, then

$$
p^{\prime}=\mathbf{u}^{T} \mathbf{x}^{\prime}+\mathbf{u}^{\prime T} \mathbf{x} .
$$

H. From $p(\theta)$ to $(x(\theta), y(\theta))$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K}, the support function $p(\theta)$ is C^{1} (i.e. continuously differentiable). Moreover, we have

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)} .
$$

Idea: Let

$$
\mathbf{x}(\theta):=\binom{x(\theta)}{y(\theta)}, \quad \mathbf{u}:=\binom{\sin \theta}{-\cos \theta}
$$

We have

$$
p=\mathbf{u}^{T} \mathbf{x} .
$$

If we can show that p is differentiable, then

$$
p^{\prime}=\mathbf{u}^{T} \mathbf{x}^{\prime}+\mathbf{u}^{\prime T} \mathbf{x} .
$$

Since \mathbf{x}^{\prime} is perpendicular to $\mathbf{u}, \mathbf{u}^{T} \mathbf{x}^{\prime}=0$, and we obtain

$$
\binom{p}{p^{\prime}}=\binom{\mathbf{u}^{T}}{\mathbf{u}^{T}} \mathbf{x}=\left(\begin{array}{cc}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right) \mathbf{x} .
$$

H. From $p(\theta)$ to $(x(\theta), y(\theta))$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K}, the support function $p(\theta)$ is C^{1} (i.e. continuously differentiable). Moreover, we have

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)} .
$$

Idea: Let

$$
\mathbf{x}(\theta):=\binom{x(\theta)}{y(\theta)}, \quad \mathbf{u}:=\binom{\sin \theta}{-\cos \theta}
$$

We have

$$
p=\mathbf{u}^{T} \mathbf{x} .
$$

If we can show that p is differentiable, then

$$
p^{\prime}=\mathbf{u}^{T} \mathbf{x}^{\prime}+\mathbf{u}^{\prime T} \mathbf{x} .
$$

Since \mathbf{x}^{\prime} is perpendicular to $\mathbf{u}, \mathbf{u}^{T} \mathbf{x}^{\prime}=0$, and we obtain

$$
\binom{p}{p^{\prime}}=\binom{\mathbf{u}^{T}}{\mathbf{u}^{T}} \mathbf{x}=\left(\begin{array}{cc}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right) \mathbf{x} .
$$

Now solve this linear system for \mathbf{x}.

I. The Width Function $W(\theta)$

$$
p(\theta)=x(\theta) \sin \theta-y(\theta) \cos \theta, \quad W(\theta)=p(\theta)+p(\theta+\pi)
$$

J. Using Fourier Series

Idea: To obtain curves of constant width, first find a $C^{1}, 2 \pi$-periodic function $p(\theta)$ that satisfies

$$
p(\theta)+p(\theta+\pi)=D
$$

for some constant (diameter) $D>0$, then use the formula

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)}
$$

to construct a curve.

J. Using Fourier Series

Idea: To obtain curves of constant width, first find a $C^{1}, 2 \pi$-periodic function $p(\theta)$ that satisfies

$$
p(\theta)+p(\theta+\pi)=D
$$

for some constant (diameter) $D>0$, then use the formula

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)}
$$

to construct a curve.

Q: How to find a desired function $p(\theta)$?

J. Using Fourier Series

Idea: To obtain curves of constant width, first find a $C^{1}, 2 \pi$-periodic function $p(\theta)$ that satisfies

$$
p(\theta)+p(\theta+\pi)=D
$$

for some constant (diameter) $D>0$, then use the formula

$$
\binom{x(\theta)}{y(\theta)}=\left(\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right)\binom{p(\theta)}{p^{\prime}(\theta)}
$$

to construct a curve.

Q: How to find a desired function $p(\theta)$?

Fourier Series.

J. Using Fourier Series

Fourier expansion of a $C^{1}, 2 \pi$-periodic function $p(\theta)$:

$$
p(\theta) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right)
$$

J. Using Fourier Series

Fourier expansion of a $C^{1}, 2 \pi$-periodic function $p(\theta)$:

$$
p(\theta) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right)
$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself.

J. Using Fourier Series

Fourier expansion of a $C^{1}, 2 \pi$-periodic function $p(\theta)$:

$$
p(\theta) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right)
$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself.
Similarly,

$$
p(\theta+\pi) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left((-1)^{k} a_{k} \cos k \theta+(-1)^{k} b_{k} \sin k \theta\right) .
$$

J. Using Fourier Series

Fourier expansion of a $C^{1}, 2 \pi$-periodic function $p(\theta)$:

$$
p(\theta) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right)
$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself.
Similarly,

$$
p(\theta+\pi) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left((-1)^{k} a_{k} \cos k \theta+(-1)^{k} b_{k} \sin k \theta\right)
$$

Taking the sum yields:

$$
D=p(\theta)+p(\theta+\pi) \sim a_{0}+2 \sum_{k=1}^{\infty}\left(a_{2 k} \cos 2 k \theta+b_{2 k} \sin 2 k \theta\right)
$$

J. Using Fourier Series

Fourier expansion of a $C^{1}, 2 \pi$-periodic function $p(\theta)$:

$$
p(\theta) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right)
$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself.
Similarly,

$$
p(\theta+\pi) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left((-1)^{k} a_{k} \cos k \theta+(-1)^{k} b_{k} \sin k \theta\right)
$$

Taking the sum yields:

$$
D=p(\theta)+p(\theta+\pi) \sim a_{0}+2 \sum_{k=1}^{\infty}\left(a_{2 k} \cos 2 k \theta+b_{2 k} \sin 2 k \theta\right)
$$

It follows that $a_{2 k}, b_{2 k}=0, \quad k=1,2, \ldots$
In other words, for $p(\theta)$ to be the support function of a curve of constant width, its Fourier series can only contain the odd terms and the constant. Moreover, $a_{0}=D$.

K. Plotting CCW

Note. Adding a linear combination of $\sin \theta$ and $\cos \theta$ to $p(\theta)$ would result in a shifting of the shape. Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest, non-circular case would be when

$$
p(\theta)=\frac{D}{2}+\cos 3 \theta
$$

K. Plotting CCW

Note. Adding a linear combination of $\sin \theta$ and $\cos \theta$ to $p(\theta)$ would result in a shifting of the shape. Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest, non-circular case would be when

$$
p(\theta)=\frac{D}{2}+\cos 3 \theta
$$

(a) $D=6$

(b) $D=16$

(c) $D=24$

K. Plotting CCW

Note. Adding a linear combination of $\sin \theta$ and $\cos \theta$ to $p(\theta)$ would result in a shifting of the shape. Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest, non-circular case would be when

$$
p(\theta)=\frac{D}{2}+\cos 3 \theta
$$

(a) $D=6$

(b) $D=16$

(c) $D=24$

Convexity: $p(\theta)+p^{\prime \prime}(\theta) \geq 0$. This is related to the curvature of the curve. (Above, $D=16$ is critical.)

K. Plotting CCW

Theorem. Let \mathcal{C} be any (convex) CCW of diameter D. Its circumference must be equal to πD. (This is a calculus exercise that you can do!)

K. Plotting CCW

Theorem. Let \mathcal{C} be any (convex) CCW of diameter D. Its circumference must be equal to πD. (This is a calculus exercise that you can do!)

Another picture.

$$
p(\theta)=79+2 \cos 3 \theta-\sin 5 \theta+\cos 7 \theta
$$

L. Variation - Equi-inscribable Curves (EIC)

Another view of CCW. A CCW of width D is a closed convex curve that can freely rotate between two parallel lines of distance D and touching both lines all the time.

L. Variation - Equi-inscribable Curves (EIC)

Another view of CCW. A CCW of width D is a closed convex curve that can freely rotate between two parallel lines of distance D and touching both lines all the time.

Definition. A closed convex curve is said to be equi-inscribed in a convex polygon \mathcal{P} if the curve can rotate freely inside \mathcal{P} and touching all sides of \mathcal{P} all the time.

L. Variation - Equi-inscribable Curves (EIC)

Another view of CCW. A CCW of width D is a closed convex curve that can freely rotate between two parallel lines of distance D and touching both lines all the time.

Definition. A closed convex curve is said to be equi-inscribed in a convex polygon \mathcal{P} if the curve can rotate freely inside \mathcal{P} and touching all sides of \mathcal{P} all the time.

Note. Any CCW is a equi-inscribed in a square or a rhombus. Example:

L. Variation - Equi-inscribable Curves (EIC)

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

L. Variation - Equi-inscribable Curves (EIC)

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?
Theorem. A triangle \mathcal{T} admits a noncircular, equi-inscribed curve if and only if all three angles of \mathcal{T} are rational multiples of π.

L. Variation - Equi-inscribable Curves (EIC)

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?
Theorem. A triangle \mathcal{T} admits a noncircular, equi-inscribed curve if and only if all three angles of \mathcal{T} are rational multiples of π.

Idea. Suppose that α, β are two outer angles of a triangle \mathcal{T}, with

$$
0<\alpha, \beta<\pi<\alpha+\beta
$$

A closed convex curve with support function $p(\theta)$ is equi-inscribed in a triangle similar to \mathcal{T} if and only if

$$
W_{\alpha, \beta}(\theta):=\sin (2 \pi-\alpha-\beta) p(\theta)+\sin (\alpha) p(\theta+\beta)+\sin (\beta) p(\theta-\alpha)
$$

is constant in θ.

L. Variation - Equi-inscribable Curves (EIC)

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?
Theorem. A triangle \mathcal{T} admits a noncircular, equi-inscribed curve if and only if all three angles of \mathcal{T} are rational multiples of π.

Idea. Suppose that α, β are two outer angles of a triangle \mathcal{T}, with

$$
0<\alpha, \beta<\pi<\alpha+\beta
$$

A closed convex curve with support function $p(\theta)$ is equi-inscribed in a triangle similar to \mathcal{T} if and only if

$$
W_{\alpha, \beta}(\theta):=\sin (2 \pi-\alpha-\beta) p(\theta)+\sin (\alpha) p(\theta+\beta)+\sin (\beta) p(\theta-\alpha)
$$

is constant in θ.
Note. As $\alpha, \beta \rightarrow \pi / 2$, we have

$$
W_{\alpha, \beta}(\theta) \rightarrow p\left(\theta+\frac{\pi}{2}\right)+p\left(\theta-\frac{\pi}{2}\right)
$$

which is just the width function shifted in θ by $\pi / 2$.

L. Variation - Equi-inscribable Curves (EIC)

Example. $\alpha=\beta=2 \pi / 3, p(\theta)=3+\cos 2 \theta$. In this case, $W_{\alpha, \beta}(\theta)=9 \sqrt{3} / 2$.

L. Variation - Equi-inscribable Curves (EIC)

Example. $\alpha=\beta=2 \pi / 3, p(\theta)=3+\cos 2 \theta$. In this case, $W_{\alpha, \beta}(\theta)=9 \sqrt{3} / 2$.

M. Beyond

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.

M. Beyond

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.
Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it \Rightarrow each of its angles is a rational multiple of π or it is a rhombus.

M. Beyond

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.
Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it \Rightarrow each of its angles is a rational multiple of π or it is a rhombus.

Idea. Extend a convex polytope into a triangle.

M. Beyond

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.
Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it \Rightarrow each of its angles is a rational multiple of π or it is a rhombus.

Idea. Extend a convex polytope into a triangle.

Q: What about sufficient conditions?

M. Beyond

Problem 2. From 2D to 3D - What about solids of constant width?

M. Beyond

Problem 2. From 2D to 3D - What about solids of constant width?

Let $\mathcal{S} \subset \mathbb{R}^{3}$ be a closed, convex surface. Let \mathbf{u} be the outer unit normal at a point $\mathbf{x} \in \mathcal{S}$. One can define a support function analogously by

$$
p(\mathbf{u}):=\mathbf{x} \cdot \mathbf{u}
$$

The width function is

$$
W(\mathbf{u})=p(\mathbf{u})+p(-\mathbf{u})
$$

M. Beyond

Problem 2. From 2D to 3D - What about solids of constant width?

Let $\mathcal{S} \subset \mathbb{R}^{3}$ be a closed, convex surface. Let \mathbf{u} be the outer unit normal at a point $\mathbf{x} \in \mathcal{S}$. One can define a support function analogously by

$$
p(\mathbf{u}):=\mathbf{x} \cdot \mathbf{u}
$$

The width function is

$$
W(\mathbf{u})=p(\mathbf{u})+p(-\mathbf{u})
$$

Note that \mathbf{u} is just a point on the unit sphere, which we can parametrize using spherical coordinates:

$$
\mathbf{u}=\left(\begin{array}{c}
\cos s \sin t \\
\sin s \sin t \\
\cos t
\end{array}\right), \quad s \in[0,2 \pi), t \in[0, \pi)
$$

M. Beyond

Problem 2. From 2D to 3D - What about solids of constant width?

M. Beyond

Problem 2. From 2D to 3D — What about solids of constant width?

Let $\mathcal{S} \subset \mathbb{R}^{3}$ be a closed, convex surface. Let \mathbf{u} be the outer unit normal at a point $\mathbf{x} \in \mathcal{S}$. One can define a support function analogously by

$$
p(\mathbf{u}):=\mathbf{x} \cdot \mathbf{u}
$$

The width function is

$$
W(\mathbf{u})=p(\mathbf{u})+p(-\mathbf{u})
$$

Note that \mathbf{u} is just a point on the unit sphere, which we can parametrize using spherical coordinates:

$$
\mathbf{u}=\left(\begin{array}{c}
\cos s \sin t \\
\sin s \sin t \\
\cos t
\end{array}\right), \quad s \in[0,2 \pi), t \in[0, \pi)
$$

$W=$ const. is again a condition on the Fourier expansion of $p(s, t)$ (extended to be doubly periodic):

$$
D=p(s, t)+p(s+\pi, \pi-t)
$$

M. Beyond

Example. $p(\mathbf{u})=5 / 4+u_{1} u_{2} u_{3}$. Clearly $p(\mathbf{u})+p(-\mathbf{u})=5 / 2$, a constant. The surface has constant width and looks like:

M. Beyond

Example. $p(\mathbf{u})=5 / 4+u_{1} u_{2} u_{3}$. Clearly $p(\mathbf{u})+p(-\mathbf{u})=5 / 2$, a constant. The surface has constant width and looks like:

M. Beyond

Example. $p(s, t)=10+\cos 3 s \sin 3 t \sin ^{2} t$. Can check $p(s, t)+p(s+\pi, \pi-t)=20$, a constant. The surface has constant width and looks like:

M. Beyond

Example. $p(s, t)=10+\cos 3 s \sin 3 t \sin ^{2} t$. Can check $p(s, t)+p(s+\pi, \pi-t)=20$, a constant. The surface has constant width and looks like:

M. Beyond

Q: What else can we say about solids/surfaces of constant width? What about closed convex surfaces that are equi-inscribable in convex polyhedra (about which very little is known)?

M. Beyond

Q: What else can we say about solids/surfaces of constant width? What about closed convex surfaces that are equi-inscribable in convex polyhedra (about which very little is known)?

Interested? Start with. . .

How Round Is Your Circle? (2011) by John Bryant and Chris Sangwin On Curves and Surfaces of Constant Width (2013) by H. L. Resnikoff College Geometry Project (1965-71)
https://archive.org/details/CollegeGeometry/Curvestoft Constant+Width.mkv

Thank you!

