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F. Strictly Convex Regions in R?

Definition. Given a region K C R?, it is said to be convex if the line segment connecting any two
points p, ¢ € K remains entirely in £, and it is said to be strictly convex if, for any two points p,q €
the interior of the line segment connecting p, ¢ lives entirely in the interior of /.
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O X
p(0) = (x(0),y(0)) - (sin 6, — cos 0)

= x(0)sind — y(0) cos .
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H. From p(0) to (z(0),y(0))

Theorem. Given a (closed, bounded) strictly convex region K, the support function p(6) is C* (i.e.
continuously differentiable). Moreover, we have

(200) = (8, o) (1),
Idea: Let

We have

If we can show that p is differentiable, then
p =u'x +u'x.

T

Since x' is perpendicular to u, u* x’ = 0, and we obtain

Py ul . — sinf — cos 6 .
o) \ut ~ \ cosf sinf '

Now solve this linear system for x.
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p(0) = x(0)sin 6 — y() cos v, W(0) =p(0) +p(0+ 7).



J. Using Fourier Series
Idea: To obtain curves of constant width, first find a C*, 2r-periodic function p(f) that satisfies
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to construct a curve.

Fourier Series.
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Fourier expansion of a C*, 2r-periodic function p(f):

p(d) ~ 20 Z(ak cos k6 + by sin k6).

2

Theorem. The Fourier series of p(f) converges (absolutely and uniformly) to p(6) itself.
Similarly,
p(0@+m) ~ —+Z ) ay, cos kO + (—1)"b, sin k6).
k=1

Taking the sum yields:

D=p@)+pl+m)~ay+?2 Z(a% cos 2k6 + by sin 2k0).
k=1

It follows that asi, bop, =0, k=1,2,...

In other words, for p(0) to be the support function of a curve of constant width, its Fourier series can only
contain the odd terms and the constant. Moreover, ag = D.
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K. Plotting CCW

Note. Adding a linear combination of sin # and cos# to p(f) would result in a shifting of the shape.
Shifting the variable 6 by a constant would result in a rotation of the shape. Hence, the simplest,
non-circular case would be when

D
p(0) = - +cos 36.

e
() D=6 (b) D =16 () D=2

Convexity: p(f) + p”(6) > 0. This is related to the curvature of the curve. (Above, D = 16 is critical.)
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Theorem. Let C be any (convex) CCW of diameter D. Its circumference must be equal to 7D. (This is
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Another picture.

p(6) = 79 4+ 2 cos 30 — sin 50 + cos 70
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Definition. A closed convex curve is said to be equi-inscribed in a convex polygon P if the curve can
rotate freely inside P and touching all sides of P all the time.

Note. Any CCW is a equi-inscribed in a square or a rhombus. Example:
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Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

Theorem. A triangle 7 admits a noncircular, equi-inscribed curve if and only if all three angles of T
are rational multiples of 7.

Idea. Suppose that a, 5 are two outer angles of a triangle 7, with
D<a,f<m<a+f.

A closed convex curve with support function p(f) is equi-inscribed in a triangle similar to 7 if and
only if
Wy 5(0) == sin(2m — a — B)p(0) + sin(a)p(d + B) + sin(5)p(f — «)

1S constant in 6.

Note. As o, 8 — 7/2, we have

Wa’ﬁ(e)%p(e—l—g)%—p(@—g),

which is just the width function shifted in 6 by 7 /2.
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Example. o = 3 = 27/3, p() = 3 + cos 20. In this case, W, 5(0) = 9v/3/2.
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L. Variation

9v/3/2.

21 /3, p(0) = 3 + cos 26. In this case, W, 3(0) =

Example. o =
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Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.

Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it = each of its
angles is a rational multiple of 7 or it is a rhombus.

Idea. Extend a convex polytope into a triangle.

Q: What about sufficient conditions?
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Problem 2. From 2D to 3D — What about solids of constant width?

Let S C R’ be a closed, convex surface. Let u be the outer unit normal at a point x € S. One can
define a support function analogously by

The width function is
W(u) = p(u) + p(—u).

Note that u is just a point on the unit sphere, which we can parametrize using spherical coordinates:

cos ssint
u= | sinssint |, s€]l0,2m),t€[0,m).
cost

W = const. is again a condition on the Fourier expansion of p(s, t) (extended to be doubly periodic):

D =p(s,t)+p(s+m,m—t).



M. Beyond

Example. p(u) = 5/4 + ujusus. Clearly p(u) + p(—u) = 5/2, a constant. The surface has constant width
and looks like:



M. Beyond

Example. p(u) = 5/4 + ujusus. Clearly p(u) + p(—u) = 5/2, a constant. The surface has constant width
and looks like:




M. Beyond

Example. p(s,t) = 10 + cos 3ssin 3t sin*t. Can check p(s,t) + p(s +m, 7 —t) = 20, a constant. The surface
has constant width and looks like:



M. Beyond

Example. p(s,t) = 10 + cos 3ssin 3t sin*t. Can check p(s,t) + p(s +m, 7 —t) = 20, a constant. The surface
has constant width and looks like:




M. Beyond

Q: What else can we say about solids/surfaces of constant width? What
about closed convex surfaces that are equi-inscribable in convex polyhedra
(about which very little is known)?



M. Beyond

Q: What else can we say about solids/surfaces of constant width? What
about closed convex surfaces that are equi-inscribable in convex polyhedra
(about which very little is known)?

Interested? Start with...

How Round Is Your Circle? (2011) by John Bryant and Chris Sangwin
On Curves and Surfaces of Constant Width (2013) by H. L. Resnikoff
College Geometry Project (1965-71)

https://archive.org/details/CollegeGeometry/Curves+of+
Constant+Width.mkv
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https://archive.org/details/CollegeGeometry/Curves+of+Constant+Width.mkv

Thank you!
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