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F. Strictly Convex Regions in R2

Definition. Given a region K ⊂ R2, it is said to be convex if the line segment connecting any two
points p, q ∈ K remains entirely in K, and it is said to be strictly convex if, for any two points p, q ∈ K
the interior of the line segment connecting p, q lives entirely in the interior of K.
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G. The Support Function p(θ)

p(θ) = (x(θ), y(θ)) · (sin θ,− cos θ)
= x(θ) sin θ − y(θ) cos θ.
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H. From p(θ) to (x(θ), y(θ))

Theorem. Given a (closed, bounded) strictly convex region K, the support function p(θ) is C1 (i.e.
continuously differentiable). Moreover, we have(

x(θ)
y(θ)

)
=

(
sin θ cos θ
− cos θ sin θ

)(
p(θ)
p′(θ)

)
.

Idea: Let
x(θ) :=

(
x(θ)
y(θ)

)
, u :=

(
sin θ
− cos θ

)
.

We have
p = uTx.

If we can show that p is differentiable, then

p′ = uTx′ + u′Tx.

Since x′ is perpendicular to u, uTx′ = 0, and we obtain(
p
p′

)
=

(
uT

u′T

)
x.

Now solve this linear system for x.
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I. The Width Function W (θ)

p(θ) = x(θ) sin θ − y(θ) cos θ, W (θ) = p(θ) + p(θ+ π).



J. Using Fourier Series

Idea: To obtain curves of constant width, first find a C1, 2π-periodic function p(θ) that satisfies

p(θ) + p(θ + π) = D

for some constant (diameter) D > 0, then use the formula(
x(θ)
y(θ)

)
=

(
sin θ cos θ
− cos θ sin θ

)(
p(θ)
p′(θ)

)
to construct a curve.

Q: How to find a desired function p(θ)?

Fourier Series.
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J. Using Fourier Series

Fourier expansion of a C1, 2π-periodic function p(θ):

p(θ) ∼ a0
2
+

∞∑
k=1

(ak cos kθ + bk sin kθ).

Theorem. The Fourier series of p(θ) converges (absolutely and uniformly) to p(θ) itself.

Similarly,

p(θ + π) ∼ a0
2
+

∞∑
k=1

((−1)kak cos kθ + (−1)kbk sin kθ).

Taking the sum yields:

D = p(θ) + p(θ + π) ∼ a0 +

∞∑
k=1

(a2k cos 2kθ + b2k sin 2kθ).

It follows that a2k, b2k = 0, k = 1, 2, . . .

In other words, for p(θ) to be the support function of a curve of constant width, its Fourier series could only
contain the odd terms and the constant.
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In other words, for p(θ) to be the support function of a curve of constant width, its Fourier series can only
contain the odd terms and the constant. Moreover, a0 = D.



K. Plotting CCW

Note. Adding a linear combination of sin θ and cos θ to p(θ) would result in a shifting of the shape.
Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest,
non-circular case would be when

p(θ) =
D

2
+ cos 3θ.
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K. Plotting CCW

Note. Adding a linear combination of sin θ and cos θ to p(θ) would result in a shifting of the shape.
Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest,
non-circular case would be when

p(θ) =
D

2
+ cos 3θ.

(a) D = 6 (b) D = 16 (c) D = 24

Convexity: p(θ) + p′′(θ) ≥ 0. This is related to the curvature of the curve. (Above, D = 16 is critical.)



K. Plotting CCW

Theorem. Let C be any (convex) CCW of diameter D. Its circumference must be equal to πD. (This is
a calculus exercise that you can do!)
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Theorem. Let C be any (convex) CCW of diameter D. Its circumference must be equal to πD. (This is
a calculus exercise that you can do!)

Another picture.

p(θ) = 79 + 2 cos 3θ − sin 5θ + cos 7θ



L. Variation — Equi-inscribable Curves (EIC)

Another view of CCW. A CCW of width D is a closed convex curve that can freely rotate between
two parallel lines of distance D and touching both lines all the time.

Definition. A closed convex curve is said to be equi-inscribed in a convex polygon P if the curve can
rotate freely inside the polygon while touching all sides of P all the time.

Note. Any CCW is a equi-inscribed in a square. Example:
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Another view of CCW. A CCW of width D is a closed convex curve that can freely rotate between
two parallel lines of distance D and touching both lines all the time.

Definition. A closed convex curve is said to be equi-inscribed in a convex polygon P if the curve can
rotate freely inside P and touching all sides of P all the time.

Note. Any CCW is a equi-inscribed in a square or a rhombus. Example:



L. Variation — Equi-inscribable Curves (EIC)

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

Theorem. A triangle T admits a noncircular, equi-inscribed curve if and only if all three angles of T
are rational multiples of π.

Idea. Suppose that α, β are two outer angles of a triangle T , with

0 < α, β < π < α + β.

A closed convex curve with support function p(θ) is equi-inscribed in a triangle similar to T if and
only if

Wα,β(θ) := sin(2π − α− β)p(θ) + sin(α)p(θ + β) + sin(β)p(θ − α)
is constant in θ.

Note. As α, β → π/2, we have

Wα,β(θ)→ p
(
θ +

π

2

)
+ p

(
θ − π

2

)
,

which is just the width function shifted in θ by π/2.
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L. Variation — Equi-inscribable Curves (EIC)

Example. α = β = 2π/3, p(θ) = 3 + cos 2θ. In this case, Wα,β(θ) = 9
√
3/2.
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Problem 2. From 2D to 3D — What about solids of constant width?

Let S ⊂ R3 be a closed, convex surface. Let u be the outer unit normal at a point x ∈ S . One can
define a support function analogously by

p(u) := x · u.

The width function is
W (u) = p(u) + p(−u).

Note that u is just a point on the unit sphere, which we can parametrize using spherical coordinates:

u =

 cos s sin t
sin s sin t
cos t

 , s ∈ [0, 2π), t ∈ [0, π).

W = const. is again a condition on the Fourier expansion of p(s, t).
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Problem 2. From 2D to 3D — What about solids of constant width?

Let S ⊂ R3 be a closed, convex surface. Let u be the outer unit normal at a point x ∈ S . One can
define a support function analogously by

p(u) := x · u.

The width function is
W (u) = p(u) + p(−u).

Note that u is just a point on the unit sphere, which we can parametrize using spherical coordinates:

u =

 cos s sin t
sin s sin t
cos t

 , s ∈ [0, 2π), t ∈ [0, π).

W = const. is again a condition on the Fourier expansion of p(s, t) (extended to be doubly periodic):

D = p(s, t) + p(s + π, π − t).



M. Beyond

Example. p(u) = 5/4 + u1u2u3. Clearly p(u) + p(−u) = 5/2, a constant. The surface has constant width
and looks like:
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has constant width and looks like:
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Q: What else can we say about solids/surfaces of constant width? What
about closed convex surfaces that are equi-inscribable in convex polyhedra
(about which very little is known)?
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Q: What else can we say about solids/surfaces of constant width? What
about closed convex surfaces that are equi-inscribable in convex polyhedra
(about which very little is known)?

Interested? Start with. . .
How Round Is Your Circle? (2011) by John Bryant and Chris Sangwin
On Curves and Surfaces of Constant Width (2013) by H. L. Resnikoff
College Geometry Project (1965-71)
https://archive.org/details/CollegeGeometry/Curves+of+

Constant+Width.mkv

https://archive.org/details/CollegeGeometry/Curves+of+Constant+Width.mkv
https://archive.org/details/CollegeGeometry/Curves+of+Constant+Width.mkv


Thank you!
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