Shapes of Constant Width and Beyond

Sept. 18, 2019 — Math Club, CU Boulder

Yuhao Hu

University of Colorado Boulder

 $\rightarrow pull$

fix

B. Manhole Cover

B. Manhole Cover

REULEAUX TRIANGLE

a>b>c

a>b>c

a>b>c

a>b>c

a>b>c

E. Ruler-Compass Construction (From any triangle with sides $a > b > c \dots$)

E. Ruler-Compass Construction (From any triangle with sides $a > b > c \dots$)

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K} , the support function $p(\theta)$ is C^1 (i.e. continuously differentiable). Moreover, we have

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}.$$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K} , the support function $p(\theta)$ is C^1 (i.e. continuously differentiable). Moreover, we have

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}.$$

Idea: Let

$$\mathbf{x}(\theta) := \begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix}, \qquad \mathbf{u} := \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}.$$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K} , the support function $p(\theta)$ is C^1 (i.e. continuously differentiable). Moreover, we have

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}.$$

Idea: Let

$$\mathbf{x}(\theta) := \begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix}, \qquad \mathbf{u} := \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}.$$

We have

$$p = \mathbf{u}^T \mathbf{x}.$$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K} , the support function $p(\theta)$ is C^1 (i.e. continuously differentiable). Moreover, we have

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}.$$

Idea: Let

$$\mathbf{x}(\theta) := \begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix}, \qquad \mathbf{u} := \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}.$$

We have

$$p = \mathbf{u}^T \mathbf{x}.$$

If we can show that *p* is differentiable, then

$$p' = \mathbf{u}^T \mathbf{x}' + {\mathbf{u}'}^T \mathbf{x}.$$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K} , the support function $p(\theta)$ is C^1 (i.e. continuously differentiable). Moreover, we have

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}.$$

Idea: Let

$$\mathbf{x}(\theta) := \begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix}, \qquad \mathbf{u} := \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}.$$

We have

$$p = \mathbf{u}^T \mathbf{x}.$$

If we can show that p is differentiable, then

$$p' = \mathbf{u}^T \mathbf{x}' + {\mathbf{u}'}^T \mathbf{x}.$$

Since \mathbf{x}' is perpendicular to \mathbf{u} , $\mathbf{u}^T \mathbf{x}' = 0$, and we obtain

$$\begin{pmatrix} p \\ p' \end{pmatrix} = \begin{pmatrix} \mathbf{u}^T \\ \mathbf{u'}^T \end{pmatrix} \mathbf{x} = \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \mathbf{x}.$$

Theorem. Given a (closed, bounded) strictly convex region \mathcal{K} , the support function $p(\theta)$ is C^1 (i.e. continuously differentiable). Moreover, we have

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}.$$

Idea: Let

$$\mathbf{x}(\theta) := \begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix}, \qquad \mathbf{u} := \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}.$$

We have

$$p = \mathbf{u}^T \mathbf{x}.$$

If we can show that p is differentiable, then

$$p' = \mathbf{u}^T \mathbf{x}' + {\mathbf{u}'}^T \mathbf{x}.$$

Since \mathbf{x}' is perpendicular to \mathbf{u} , $\mathbf{u}^T \mathbf{x}' = 0$, and we obtain

$$\begin{pmatrix} p \\ p' \end{pmatrix} = \begin{pmatrix} \mathbf{u}^T \\ \mathbf{u'}^T \end{pmatrix} \mathbf{x} = \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \mathbf{x}.$$

Now solve this linear system for **x**.

I. The Width Function $W(\theta)$

 $p(\theta) = x(\theta) \sin \theta - y(\theta) \cos \theta, \qquad W(\theta) = p(\theta) + p(\theta + \pi).$

Idea: To obtain curves of constant width, first find a C^1 , 2π -periodic function $p(\theta)$ that satisfies

$$p(\theta) + p(\theta + \pi) = D$$

for some constant (diameter) D > 0, then use the formula

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}$$

to construct a curve.

Idea: To obtain curves of constant width, first find a C^1 , 2π -periodic function $p(\theta)$ that satisfies

$$p(\theta) + p(\theta + \pi) = D$$

for some constant (diameter) D > 0, then use the formula

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}$$

to construct a curve.

Q: How to find a desired function $p(\theta)$?

Idea: To obtain curves of constant width, first find a C^1 , 2π -periodic function $p(\theta)$ that satisfies

$$p(\theta) + p(\theta + \pi) = D$$

for some constant (diameter) D > 0, then use the formula

$$\begin{pmatrix} x(\theta) \\ y(\theta) \end{pmatrix} = \begin{pmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} p(\theta) \\ p'(\theta) \end{pmatrix}$$

to construct a curve.

Q: How to find a desired function $p(\theta)$?

Fourier Series.

Fourier expansion of a C^1 , 2π -periodic function $p(\theta)$:

$$p(\theta) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta).$$

Fourier expansion of a C^1 , 2π -periodic function $p(\theta)$:

$$p(\theta) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta).$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself.

Fourier expansion of a C^1 , 2π -periodic function $p(\theta)$:

$$p(\theta) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta).$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself. Similarly,

$$p(\theta + \pi) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} ((-1)^k a_k \cos k\theta + (-1)^k b_k \sin k\theta).$$

Fourier expansion of a C^1 , 2π -periodic function $p(\theta)$:

$$p(\theta) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta).$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself. Similarly,

$$p(\theta + \pi) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} ((-1)^k a_k \cos k\theta + (-1)^k b_k \sin k\theta).$$

Taking the sum yields:

$$D = p(\theta) + p(\theta + \pi) \sim a_0 + 2\sum_{k=1}^{\infty} (a_{2k} \cos 2k\theta + b_{2k} \sin 2k\theta).$$

Fourier expansion of a C^1 , 2π -periodic function $p(\theta)$:

$$p(\theta) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta).$$

Theorem. The Fourier series of $p(\theta)$ converges (absolutely and uniformly) to $p(\theta)$ itself. Similarly,

$$p(\theta + \pi) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} ((-1)^k a_k \cos k\theta + (-1)^k b_k \sin k\theta).$$

Taking the sum yields:

$$D = p(\theta) + p(\theta + \pi) \sim a_0 + 2\sum_{k=1}^{\infty} (a_{2k}\cos 2k\theta + b_{2k}\sin 2k\theta).$$

It follows that $a_{2k}, b_{2k} = 0, \quad k = 1, 2, ...$

In other words, for $p(\theta)$ to be the support function of a curve of constant width, its Fourier series can only contain the odd terms and the constant. Moreover, $a_0 = D$.

Note. Adding a linear combination of $\sin \theta$ and $\cos \theta$ to $p(\theta)$ would result in a shifting of the shape. Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest, non-circular case would be when

$$p(\theta) = \frac{D}{2} + \cos 3\theta.$$

Note. Adding a linear combination of $\sin \theta$ and $\cos \theta$ to $p(\theta)$ would result in a shifting of the shape. Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest, non-circular case would be when

$$p(\theta) = \frac{D}{2} + \cos 3\theta.$$

Note. Adding a linear combination of $\sin \theta$ and $\cos \theta$ to $p(\theta)$ would result in a shifting of the shape. Shifting the variable θ by a constant would result in a rotation of the shape. Hence, the simplest, non-circular case would be when

Convexity: $p(\theta) + p''(\theta) \ge 0$. This is related to the curvature of the curve. (Above, D = 16 is critical.)

$$p(\theta) = \frac{D}{2} + \cos 3\theta.$$

Theorem. Let C be any (convex) CCW of diameter D. Its circumference must be equal to πD . (This is a calculus exercise that you can do!)

Theorem. Let C be any (convex) CCW of diameter D. Its circumference must be equal to πD . (This is a calculus exercise that you can do!)

Another picture.

Another view of CCW. A CCW of width *D* is a closed convex curve that can freely rotate between two parallel lines of distance *D* and touching both lines all the time.

Another view of CCW. A CCW of width *D* is a closed convex curve that can freely rotate between two parallel lines of distance *D* and touching both lines all the time.

Definition. A closed convex curve is said to be equi-inscribed in a convex polygon \mathcal{P} if the curve can rotate freely inside \mathcal{P} and touching all sides of \mathcal{P} all the time.

Another view of CCW. A CCW of width *D* is a closed convex curve that can freely rotate between two parallel lines of distance *D* and touching both lines all the time.

Definition. A closed convex curve is said to be equi-inscribed in a convex polygon \mathcal{P} if the curve can rotate freely inside \mathcal{P} and touching all sides of \mathcal{P} all the time.

Note. Any CCW is a equi-inscribed in a square or a rhombus. Example:

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

Theorem. A triangle \mathcal{T} admits a noncircular, equi-inscribed curve if and only if all three angles of \mathcal{T} are rational multiples of π .
Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

Theorem. A triangle \mathcal{T} admits a noncircular, equi-inscribed curve if and only if all three angles of \mathcal{T} are rational multiples of π .

Idea. Suppose that α , β are two outer angles of a triangle \mathcal{T} , with

 $0 < \alpha, \beta < \pi < \alpha + \beta.$

A closed convex curve with support function $p(\theta)$ is equi-inscribed in a triangle similar to \mathcal{T} if and only if

$$W_{\alpha,\beta}(\theta) := \sin(2\pi - \alpha - \beta)p(\theta) + \sin(\alpha)p(\theta + \beta) + \sin(\beta)p(\theta - \alpha)$$

is constant in θ .

Q: Which polygons can admit noncircular curves that are equi-inscribed in them?

Theorem. A triangle \mathcal{T} admits a noncircular, equi-inscribed curve if and only if all three angles of \mathcal{T} are rational multiples of π .

Idea. Suppose that α , β are two outer angles of a triangle \mathcal{T} , with

 $0 < \alpha, \beta < \pi < \alpha + \beta.$

A closed convex curve with support function $p(\theta)$ is equi-inscribed in a triangle similar to \mathcal{T} if and only if

$$W_{\alpha,\beta}(\theta) := \sin(2\pi - \alpha - \beta)p(\theta) + \sin(\alpha)p(\theta + \beta) + \sin(\beta)p(\theta - \alpha)$$

is constant in θ .

Note. As $\alpha, \beta \to \pi/2$, we have

$$W_{\alpha,\beta}(\theta) \to p\left(\theta + \frac{\pi}{2}\right) + p\left(\theta - \frac{\pi}{2}\right),$$

which is just the width function shifted in θ by $\pi/2$.

Example. $\alpha = \beta = 2\pi/3$, $p(\theta) = 3 + \cos 2\theta$. In this case, $W_{\alpha,\beta}(\theta) = 9\sqrt{3}/2$.

Example. $\alpha = \beta = 2\pi/3$, $p(\theta) = 3 + \cos 2\theta$. In this case, $W_{\alpha,\beta}(\theta) = 9\sqrt{3}/2$.

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.

Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it \Rightarrow each of its angles is a rational multiple of π or it is a rhombus.

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.

Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it \Rightarrow each of its angles is a rational multiple of π or it is a rhombus.

Idea. Extend a convex polytope into a triangle.

Problem 1. Characterize curves that are equi-inscribable in quadrilaterals, pantagons, etc.

Theorem. A convex polygon admits a non-circular convex curve equi-inscribed in it \Rightarrow each of its angles is a rational multiple of π or it is a rhombus.

Idea. Extend a convex polytope into a triangle.

Q: What about sufficient conditions?

Problem 2. From 2D to 3D — What about solids of constant width?

Problem 2. From 2D to 3D — What about solids of constant width?

Let $S \subset \mathbb{R}^3$ be a closed, convex surface. Let **u** be the outer unit normal at a point $\mathbf{x} \in S$. One can define a support function analogously by

$$p(\mathbf{u}) := \mathbf{x} \cdot \mathbf{u}.$$

The width function is

$$W(\mathbf{u}) = p(\mathbf{u}) + p(-\mathbf{u}).$$

Problem 2. From 2D to 3D — What about solids of constant width?

Let $S \subset \mathbb{R}^3$ be a closed, convex surface. Let **u** be the outer unit normal at a point $\mathbf{x} \in S$. One can define a support function analogously by

$$p(\mathbf{u}) := \mathbf{x} \cdot \mathbf{u}.$$

The width function is

$$W(\mathbf{u}) = p(\mathbf{u}) + p(-\mathbf{u}).$$

Note that **u** is just a point on the unit sphere, which we can parametrize using spherical coordinates:

$$\mathbf{u} = \begin{pmatrix} \cos s \sin t \\ \sin s \sin t \\ \cos t \end{pmatrix}, \quad s \in [0, 2\pi), t \in [0, \pi).$$

Problem 2. From 2D to 3D — What about solids of constant width?

Problem 2. From 2D to 3D — What about solids of constant width?

Let $S \subset \mathbb{R}^3$ be a closed, convex surface. Let **u** be the outer unit normal at a point $\mathbf{x} \in S$. One can define a support function analogously by

$$p(\mathbf{u}) := \mathbf{x} \cdot \mathbf{u}.$$

The width function is

$$W(\mathbf{u}) = p(\mathbf{u}) + p(-\mathbf{u}).$$

Note that **u** is just a point on the unit sphere, which we can parametrize using spherical coordinates:

$$\mathbf{u} = \begin{pmatrix} \cos s \sin t \\ \sin s \sin t \\ \cos t \end{pmatrix}, \quad s \in [0, 2\pi), t \in [0, \pi).$$

W = const. is again a condition on the Fourier expansion of p(s, t) (extended to be doubly periodic):

$$D = p(s,t) + p(s+\pi,\pi-t).$$

Example. $p(\mathbf{u}) = 5/4 + u_1 u_2 u_3$. Clearly $p(\mathbf{u}) + p(-\mathbf{u}) = 5/2$, a constant. The surface has constant width and looks like:

Example. $p(\mathbf{u}) = 5/4 + u_1 u_2 u_3$. Clearly $p(\mathbf{u}) + p(-\mathbf{u}) = 5/2$, a constant. The surface has constant width and looks like:

Example. $p(s,t) = 10 + \cos 3s \sin 3t \sin^2 t$. Can check $p(s,t) + p(s + \pi, \pi - t) = 20$, a constant. The surface has constant width and looks like:

Example. $p(s,t) = 10 + \cos 3s \sin 3t \sin^2 t$. Can check $p(s,t) + p(s + \pi, \pi - t) = 20$, a constant. The surface has constant width and looks like:

Q: What else can we say about solids/surfaces of constant width? What about closed convex surfaces that are equi-inscribable in convex polyhedra (about which very little is known)?

Q: What else can we say about solids/surfaces of constant width? What about closed convex surfaces that are equi-inscribable in convex polyhedra (about which very little is known)?

Interested? Start with...

How Round Is Your Circle? (2011) by John Bryant and Chris Sangwin *On Curves and Surfaces of Constant Width* (2013) by H. L. Resnikoff *College Geometry Project* (1965-71)

https://archive.org/details/CollegeGeometry/Curves+of+ Constant+Width.mkv

Thank you!

