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At the start of Chapter VII, Volume II of Leçons sur L’Intégration des Équations aux Dérivées Partielle du
Second Ordre, E. Goursat wrote:

Pendant de longues anneées, après la publication des Mémoires d’Ampère (1814-1819), il n’a été ajouté

rien d’essentiel à la théorie qu’il avait développée...L’année 1870 marque une date importante dans

l’histoire de cette théorie; c’est en effet en mars 1870 que fut présenté à l’Académie des Sciences un

remarquable Mémoire de M.Darboux, où se trouvent des vues profondes et originales... (For long years

after the publication of Memoirs of Ampère, nothing essential has been added to the theory he had

developed...The year 1870 marks an important time in history of this theory; indeed, it is in March,

1870 that a remarkable Memoir by Darboux was presented to the Academy of Sciences, where profound

and original views were obtained...)

The “profound” view of Darboux, as Goursat puts it, is a method of integration which enables one to
solve certain types of hyperbolic PDEs with ODE techniques alone. With the more recent theory of exterior
differential systems (EDS), this method has an geometric interpretation and that solutions can be found by
integrating ODEs is almost immediate once the geometric picture is established. To explain this, I follow the
approach taken by the more recent [BGH] and define hyperbolic exterior differential systems of class s and
their characteristic systems; then, with a theorem which shows existence of certain adapted coframings, I define
what’s called Darboux integrability at level k and show by another theorem how(and why) Darboux’s method
works. These will be the topics for first part of the note.

A natural question that follows the Darboux’s theorem is: Which hyperbolic systems are Darboux integrable?
A moment’s thought suggests that perhaps a more refined way of formulating this question is by asking: Which
hyperbolic systems of class s are Darboux integrable at level k? Depending on the value of the two parameters s
and k, the previous question can be either almost trivial to answer, or quite difficult with any theory available.
For instance, in the case that class s = 0, Darboux integrability at level k = 0 is trivial; Darboux integrability
at level k = 1 for non-degenerate systems is classified as having only two types up to local equivalence (see
[BGH]). In the case that s = 1, it is an immediate consequence of the G-structure equations that the only
Monge-Ampère systems that are Darboux integrable at level k = 0 are those equivalent to the classical wave
equation zxy = 0. By contrast, to my best knowledge, a complete classification of Monge-Ampère systems that
are Darboux integrable at level k = 1 remains unknown to this day.

In light of the difficulty of classifying Darboux integrable systems as the parameters (s, k) grow large, the
following Theorem of S.Lie appears to me as remarkable:

Theorem(S.Lie) The only f -Gordon equations

zxy = f(z)

that are Darboux integrable at any level are locally equivalent to either the wave equation zxy = 0 or the Liouville’s
equation zxy = ez.

This theorem will be explained in the second part and is the main purpose of this note. The proof of Lie’s
theorem I present follows almost verbatim the arguments in E.Goursat work.

1. Hyperbolic EDS, Characteristic systems and Darboux Integrability

Definition. An exterior differential system (Ms+4, I) is said to be hyperbolic of class s if there exists a
coframing (θ1, ..., θs, ω

1, ω2, ω3, ω4) on M so that

I = {θ1, θ2, ..., θs, ω
1 ∧ ω2, ω3 ∧ ω4}alg.

Such coframings are said to be 0-adapted to the differential system (M, I).
Let (M, I) be a hyperbolic EDS of of class s with a local 0-adapted coframing (θ1, ..., θs, ω

1, ..., ω4) as defined
above; and suppose that E = 〈v〉 is a 1-dimensional integral element of (M, I) based at p ∈ M . The polar
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equations for H(E) are clearly given by the vanishing of the 1-forms:

θ1, θ2, ..., θs, v ⌟ (ω1 ∧ ω2), v ⌟ (ω3 ∧ ω4).

Thus, H(E) has exactly dimension 2 (that is, E admits a unique extension to a 2-dimensional integrabl element)
if and only if these 1-forms correspond to a system of linear equations of rank s + 2 on TpM . Equivalently
speaking, E is a characteristic integral element if and only if either

(i) θ1(v) = θ2(v) = ... = θs(v) = ω1(v) = ω2(v) = 0,

or
(ii) θ1(v) = θ2(v) = ... = θs(v) = ω3(v) = ω4(v) = 0.

This motivates the

Definition. Let (M, I) be a hyperbolic EDS of class s, for which (θ1, ..., θs, ω
1, ..., ω4) is a 0-adpated coframing.

The 0-th characteristic systems of (M, I) are defined as the pair of Pfaffian systems:

Ξ10 = {θ1, ..., θs, ω
1, ω2},

Ξ01 = {θ1, ..., θs, ω
3, ω4}.

Since the characteristic integral elements are intrinsic to a differential system, it is immediate that Ξ10 and Ξ01,
up to a switch of roles, are independent from the choice of 0-adapted coframings. Furthermore, the geometry
of the characteristic variety Ξ of (M, I) and the space of the first prolongation M (1) can be learned from a
sequence of observations, as follows.

1. By the characteristic equations, the characteristic integral elements within TpM are precisely
all the 1-dimensional subspaces of the two vector spaces

V10 = 〈θ0, ..., θs, ω
1, ω2〉⊥p , V01 = 〈θ0, ..., θs, ω

3, ω4〉⊥p .

Since V10 ∩ V01 = {0}, it follows that the characteristic variety Ξ of (M, I) is an (RP1 q RP1)-
bundle over M .
2. Let v ∈ V10, w ∈ V01 be nonzero vectors, it is clear that the plane 〈v, w〉 is an integral element
of (M, I). In other words, any projective line in RP3 intersecting both RP1-components in the
fiber Ξp is a 2-dimensional integral element of the hyperbolic system.
3. Let E2 ⊂ TpM be a 2-dimensional integral element. It is easy to see that, restricting to E2,
the 1-forms ω1, ω2 are linearly dependent, so are ω3 and ω4. Moreover, 〈ω1, ω2, ω3, ω4〉 restricts
to E2 to have rank 2, thus one may assume that ω1|E2

, ω3|E2
are independent. As a result, the

equations ω1 = 0 and ω3 = 0 each define a 1-dimensional subspace of E2 which is characteristic.
Therefore, we have that the projective line in RP3 ∼= P(TpM) determined by any 2-dimensional
integral element must intersect each of P(V10) and P(V01) at a point.
4. One learns immediately from the previous two observations that the space of the first
prolongation M (1) is a (RP1 × RP1)-bundle over M .

As for the differential ideal I(1), if we restrict to an open set in M (1) consisting of 2-dimensional integral elements
of (M, I) at which the 1-forms ω1, ω3 are independent, then M (1) has fiber coordinates (h1, h3) with E2 ∈M (1)

being defined by
E2 = 〈θ1, ..., θs, ω

2 − h1ω
1, ω4 − h3ω

3〉⊥.
In this setting, locally, I(1) is simply the Pfaffian system

I(1) = {θ1, ..., θs, ω
2 − h1ω

1, ω4 − h3ω
3}diff ,

where the 1-forms are, of course, the pull-backs of respective forms on M . As a result, there exist functions T i

defined locally on M (1) such that

dωi ≡ T iω1 ∧ ω3 mod θ1, ..., θs, ω
2 − h1ω

1, ω4 − h3ω
3.

A simple calculation leads to

dθa ≡ 0
d(ω2 − h1ω

1) ≡ −(dh1 + (h1T
1 − T 2)ω3) ∧ ω1

d(ω4 − h3ω
3) ≡ −(dh3 + (h3T

3 − T 4)ω1) ∧ ω3

 mod θ1, ..., θs, ω
2 − h1ω

1, ω4 − h3ω
3.

Hence, by introducing the 1-forms

θ10 = ω2 − h1ω
1, θ01 = ω4 − h3ω

3, π20 = dh1 + (h1T
1 − T 2)ω3, π02 = dh3 + (h3T

3 − T 4)ω1,

we see that (M (1), I(1)) is a hyperbolic system of class s+ 2 with a local 0-adapted coframing:

(θ1, ..., θs, θ10, θ01, π20, ω
1, π02, ω

3).
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Needless to say, the k-th prolongation (M (k), I(k)) is hyperbolic of class s + 2k and 0-adapted coframings can
be constructed iteratively from one on (M, I). In fact, 0-adapated coframings on the k-th prolongation can be
refined so as to satisfy certain structure equations. In particular, the following proposition is proven in [BGH].

Proposition. Let (M, I) be a hyperbolic EDS of class s. On the k-th prolongation (M (k), I(k)), a local coframing

(θ1, ..., θs, θ10, ..., θk0, θ01, ..., θ0k, πk+1,0, ω10, π0,k+1, ω01)

exists satisfying

I(k) = {θ1, ..., θs, θ10, ..., θk0, θ01, ..., θ0k, πk+1,0 ∧ ω10, π0,k+1 ∧ ω01}alg

and

dθk0 ≡ −πk+1,0 ∧ ω10 + Tk0ω01 ∧ θ01 mod θ1, ..., θs, θ10, ..., θk0,

dθ0k ≡ −π0,k+1 ∧ ω01 + T0kω10 ∧ θ10 mod θ1, ..., θs, θ01, ..., θ0k,

dθj0 ≡ −θj+1,0 ∧ ω10 + Tj0ω01 ∧ θ01 mod θ1, ..., θs, θ10, ..., θj0,

dθ0j ≡ −θ0,j+1 ∧ ω01 + T0jω10 ∧ θ10 mod θ1, ..., θs, θ01, ..., θ0j ,

dθa ≡ Paθ10 ∧ ω10 +Qaθ01 ∧ ω01 mod θ1, ..., θs,

where a = 1, ..., s, and j = 1, ..., k − 1. Such coframings are called 1-adapted to the system (M (k), I(k)).

The proof of this proposition is by induction and constructive in nature. Though not mentioned explicitely
in the paper [BGH], one can insert a parellel argument along with the inductive steps which leads to the fact
that the pair of (partial) flags

F (k)
10 =(〈θ1, ..., θs〉 ⊂ 〈θ1, ..., θs, θ10, ω10〉 ⊂ ... ⊂ 〈θ1, ..., θs, θ10, ..., θk0, ω10〉

⊂ 〈θ1, ..., θs, θ10, ..., θk0, πk+1,0, ω10〉 ⊂ T ∗xM (k)),

F (k)
01 =(〈θ1, ..., θs〉 ⊂ 〈θ1, ..., θs, θ01, ω01〉 ⊂ ... ⊂ 〈θ1, ..., θs, θ01, ..., θ0k, ω01〉

⊂ 〈θ1, ..., θs, θ01, ..., θ0k, π0,k+1, ω01〉 ⊂ T ∗xM (k))

are well-defined at any x ∈ U for some open U ⊂ M (k). This observation motivates the definition of the k-th
characteristic system associated to (M, I).

Definition. The k-th characteristic systems Ξ
(k)
10 ,Ξ

(k)
01 of (M, I) are locally defined as the Pfaffian systems:

Ξ
(k)
10 = {θ1, ..., θs, θ10, ..., θk0, πk+1,0, ω10}diff ,

Ξ
(k)
01 = {θ1, ..., θs, θ01, ..., θ0k, π0,k+1, ω01}diff .

I remark that on any integral surface of (M (k), I(k)), the characteristic systems Ξ
(k)
01 and Ξ

(k)
10 restrict to be

rank-one Frobenius systems, whose integral curves endows the integral surface with two foliations by character-
istic curves.

We are now prepared to define the Darboux integrability of a hyperbolic system.

Definition. A hyperbolic system (M, I) of class s is said to be Darboux integrable at level k if there exist

rank-two Frobenius systems ∆
(k)
10 ⊂ Ξ

(k)
10 and ∆

(k)
01 ⊂ Ξ

(k)
01 such that the associated vector bundles satisfy the

independence conditions

∆
(k)
10 ∩ (I(k))1 = ∆

(k)
01 ∩ (I(k))1 = 〈0〉.

Since the k-th characteristic system Ξ
(k)
10 of I is properly contained in the 0-th characteristic system Ξ10(I(k))

of the k-th prolongation of I, it is clear that if I is Darboux integrable at level k, then I(k) is Darboux integrable
at level zero. This directs us to first considering the case when (M, I) is a hyperbolic system of class s and is
Darboux integrable at level zero. Let (θ1, ..., θs, ω

1, ω2, ω3, ω4) be a 0-adapted coframing and

Ξ10 = {θ1, ..., θs, ω
1, ω2},

Ξ01 = {θ1, ..., θs, ω
3, ω4}.

By the assumption, Ξ10 (resp. Ξ01) has two independent local first integrals X,Y : M ⊃ U → R (resp.
P,Q : M ⊃ U → R) whose exterior differentials do not lie in I1 . In particular,

Ξ10 = {θ1, ..., θs, dX, dY },
Ξ01 = {θ1, ..., θs, dP, dQ}.
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Let γ : (−ε, ε)→ U ⊂ M be a non-characteristic initial curve for (M, I). This means that (i) γ′ is everywhere
annihilated by θ1, ..., θs; and (ii) 〈dX, dY 〉 (resp. 〈dP, dQ〉) restricts to γ to be rank-one. As a result, by choosing
a smaller ε if needed, γXY : (−ε, ε)→ R2 defined by

γXY (t) = (X(γ(t)), Y (γ(t)))

is an immersed curve in the XY -plane. One similarly defines γPQ as a curve in the PQ-plane. Thus,

(γXY × γPQ)(s, t) = (γXY (s), γPQ(t))

defines an immersed surface S in the XY PQ-space. I also point out that, since, on U , dX ∧ dY ∧ dP ∧ dQ 6= 0,
the map

π := (X,Y, P,Q) : U → R4

is a local submersion. Moreover, π maps the curve γ to the diagonal of the immersed S. Hence, π−1(S) ⊂ U is
a codimension-two submanifold of M which contains the initial curve γ and on which dX ∧ dY = dP ∧ dQ = 0.
That is, the differential system I restricts to π−1(S) to be an integrable Pfaffian system of rank s and π−1(S)
is foliated by integral surfaces of I. In particular, γ ⊂ π−1(S) lies in a unique such integral surface. Noting
that a Frobenius system can be integrated by ODE techniques, essentially we have proven the

Theorem. If (M, I) is a Darboux integrable hyperbolic system, then (locally) given any initial integral curve γ,
there exists a unique integral surface S of (M, I) containing γ; and S can be found by integrating a Frobenius
system, i.e., by solving ordinary differential equations.

As a trivial example, the wave equation in the plane zxy = 0 can be established as a hyperbolic system on
the xyzpq-space M = J1(R2,R) with the differential ideal

I = {dz − pdx− qdy, dp ∧ dx, dq ∧ dy}.

It is obvious that the characteristic systems admit {dp, dx}, {dq, dy} as rank-two integrable subsystems. The sur-
face S determined by an non-characteristic initial curve γ generally take the form S : (s, t)→ (x(s), p(s), y(t), q(t)).
The space π−1(S) is parametrized by z, s, t and I restrict to be generated by the single 1-form

dz − p(s)x′(s)ds− q(t)y′(t)dt,

which is clearly closed. As a result, z takes the form z(s, t) = F (s) +G(t). If x′(s), y′(t) 6= 0, then we can write
s = s(x), t = t(y) and obtain the familiar z(x, y) = F (s(x)) +G(t(y)) = F̄ (x) + Ḡ(y).

A less trivial example is the Liouville system {
uy = ev

vx = eu

This corresponds to a hyperbolic EDS on the xyuv-space M ⊂ J0(R2,R2) with the differential ideal

I = {(du− evdy) ∧ dx, (dv − eudx) ∧ dy}.

Clearly, (M, I) is not Darboux integrable at level zero, but it turns out that it is Darboux integrable at level 1.
Technically, checking this amounts to computing the characteristic systems of the first prolongation (M (1), I(1))

and their derived systems. Once the rank-two Frobenius subsystems ∆
(1)
10 and ∆

(1)
01 are obtained, manipulating

the 1-forms so that they become closed leads to the four first integrals X,Y, P,Q, expressed as functions of
x, y, u, v, p, q, where p, q are new coordinate functions introduced on M (1). Given an non-characteristic initial
curve γ, the corresponding surface S is then given in coordinates S : (s, t) → (X(s), Y (s), P (t), Q(t)). Now
π−1(S) submerses onto S, thus, restricting to π−1(S), four of the functions among x, y, u, v, p, q, say u, v, p, q,
can be locally solved for in terms of the rest of the variables and s, t; then the differential ideal pulls back to
the xyst-space to be a rank-two Frobenius system, whose first integrals can be found without much difficulty.

What’s notable about the Liouville system is that its solutions satisfy

uxy = vxy = eu+v.

Hence, u+ v satisfies the Liouville equation

zxy = 2ez.

Thus, in certain sense, we have seen that both the planar wave equation zxy = 0 and the Liouville equation
zxy = ez are Darboux integrable at some level. These two types of equations are special cases of the more
general f -Gordon equations zxy = f(z). By a theorem of Sophus Lie in 1880, these are the only f -Gordon
equations are Darboux integrable at any level. I will discuss Lie’s proof in the next section.
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2. Lie’s Theorem on Darboux Integrability

Lie’s proof of the theorem stated in the introduction of this note can be seen to be carried out in three steps.

1. Establish the hyperbolic exterior differential systems (M, I) corresponding to the f -Gordon

equation zxy = f(z), compute the k-th characteristic systems Ξ
(k)
10 , Ξ

(k)
01 , and notice that dx ∈

Ξ
(k)
10 and dy ∈ Ξ

(k)
01 . Observing symmetry, one only needs to work in one of the characteristic

systems, say, Ξ
(k)
10 .

2. Show that any first integral ψ for Ξ
(k)
10 must be the first integral of a rank-two distribution

D10 which is a sub-distribution of the completely integrable 〈∂x, ∂y, ∂z, ∂p1 , ..., ∂pk+1
〉 on M (k).

3. Show that if (f ′)2 − f ′′f 6= 0, then the infinite derivation D∞10 is a corank-one subbundle of

〈∂x, ∂y, ∂z, ∂p1 , ..., ∂pk+1
〉, hence x is the only first integral of Ξ

(k)
10 . (For a distribution D, the

k-the derivation Dk is defined inductively via D0 = D and Dk+1 = Dk ∪ [Dk,Dk]. The infinite
derivation D∞ is by definition

⋃∞
i=0Di.)

Step 1. To start with, note that zxy = f(z) can be established as a hyperbolic EDS on M = J1(R2,R) with
coordinates (x, y, z, p1, q1). The 1-forms

θ = dz − p1dx− q1dy,

π10 = dp1 − f(z)dy,

ω10 = dx,

π01 = dq1 − f(z)dx,

ω01 = dy

form a 0-adapted coframing on M such that the differential ideal I can be written as

I = {θ, π10 ∧ ω10, π01 ∧ ω01}alg.

To compute the first prolongation (M (1), I(1)), we introduce extra coordinates p2, q2 on M (1) such that a
two-dimensional integral element based at (x, y, z, p1, q1) ∈M (1) is determined by the vanishing of the 1-forms

θ, π10 − p2dx, π01 − q2dy.

If we let

θ10 = π10 − p2dx, θ01 = π01 − q2dy,

then the prolonged differential ideal is simply the Pfaffian system

I(1) = {θ, θ10, θ01}diff .

Exterior differentiating θ10 and θ01 gives

dθ10 ≡ −(dp2 − f ′(z)p1dy) ∧ dx mod θ,

dθ01 ≡ −(dq2 − f ′(z)q1dx) ∧ dy mod θ.

So we could put

π20 = dp2 − f ′(z)p1dy,

π02 = dq2 − f ′(z)q1dx,

and the coframing {θ, θ10, θ01, π20, dx, π02, dy} becomes automatically 1-adapted for (M (1), I(1)). Soon one

realizes the symmetry between computing the systems Ξ
(k)
10 and Ξ

(k)
01 , so I shall from now on present only the

results leading to Ξ
(k)
10 for brevity.

Naturally, on M (2), p3 is introduced and

θ20 = π20 − p3dx,

is one of the generators for I(2). Differentiation gives

dθ20 ≡ −(dp3 − (f ′(z)p2 + f ′′(z)(p1)2)dy) ∧ dx mod θ, θ10,

hence π30 can be introduced as

π30 = dp3 − (f ′(z)p2 + f ′′(z)(p1)2)dy,

such that

dθ20 ≡ −π30 ∧ dx mod θ, θ10.
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If we continue, on M (3), p4 is introduced and

θ30 = π30 − p4dx,

dθ30 ≡ −(dp4 − (f ′(z)p3 + f ′′′(z)(p1)3 + 3f ′′(z)p1p2)dy) ∧ dx, mod θ, θ10, θ20.

Hence, π40 can be given as

π40 = dp4 − (f ′(z)p3 + f ′′′(z)(p1)3 + 3f ′′(z)p1p2)dy.

Having in mind what is going on simultaneously for the (0i)-subindexed forms, I point out that (θ, θ10, ..., θ03,
π40, dx, π04, dy) is automatically a 1-adapted coframing for (M (3), I(3)) and that the 3rd characteristic systems
of (M, I) are simply

Ξ
(3)
10 = {θ, θ10, θ20, θ30, π40, dx},

Ξ
(3)
01 = {θ, θ01, θ02, θ03, π04, dy}.

It is possible now to examine some patterns for the coframes introduced on M (k), which I summarize as the
following

Lemma 1. A 1-adapted coframing {θ, θ10, ..., θk0, θ01, ..., θ0k, πk+1,0, dx, π0,k+1, dy} for (M (k), I(k)) can be con-
structed progressively such that

dθj0 ≡ −θj+1,0 ∧ dx mod θ, θ10, θ20, ..., θj−1,0, (j = 1, ..., k − 1)

dθk0 ≡ −πk+1,0 ∧ dx mod θ, θ10, ..., θk−1,0,

πk+1,0 = dpk+1 − (f ′(z)pk +Qk−1)dy,

θi0 = dpi − (f ′(z)pi−1 +Qi−2)dy − pi+1dx, (i = 1, ..., k)

and similarly for θ0j , θ0k, π0,k+1 and θ0,k+1. Here Qi are polynomials in p1, ..., pi whose coefficients are functions
of z. For non-positive i, we put pi, Qi to be identically zero.

As a result of the lemma, the k-th characteristic system Ξ
(k)
10 of (M, I) is

Ξ
(k)
10 = {θ, θ10, ..., θk0, πk+1,0, dx},

and an obvious first integral of Ξ
(k)
10 is the function x.

To summarize Lie’s further observations, I name polynomials in p1, ..., pi with coefficients being functions of
z as z-polynomials of level i. In addition, we make the

Definition. Let the weight of a nonzero z-monomial P = g(z)pi11 ...p
ir
r be defined as w(P ) = i1 + 2i2 + ...+ rir,

and define the weight of a z-polynomial to be the maximum among the weights of its nonzero terms. For
completeness, let w(0) = −∞.

Then it is easy to prove by induction the following

Lemma 2. The z-polynomials Qi (i ≥ 1) constructed in Lemma 1 satisfy

w(Qi) ≤ i+ 1.

Proofs of Lemma 1 and Lemma 2 will be given in Appendix II.

Step 2. Suppose that ψ is a first integral for Ξ
(k)
10 . By the expressions of the 1-forms θ, θ10, ..., θk0, πk+1,0 given

in Lemma 1, ψ must be independent of q1, ..., qk+1. As a result,

dψ ≡

(
∂ψ

∂y
+
∂ψ

∂z
q1 +

∂ψ

∂p1
f(z) +

∂ψ

∂p2
f ′(z)p1 +

k+1∑
i=3

∂ψ

∂pi
(f ′(z)pi−1 +Qi−2)

)
dy mod Ξ

(k)
10 .

Of course, the coefficient of dy in the equation above must vanish. Since ψ is a function of x, y, z, p1, ..., pk+1,

and that ∂ψ
∂z q1 is the only term involving some qi in the coefficient, we have obtained the two equations{

A(ψ) = 0,
B(ψ) = 0,
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where A,B are vector fields on M (k) given by

A =
∂

∂z
,

B =
∂

∂y
+ f(z)

∂

∂p1
+ f ′(z)p1

∂

∂p2
+

k+1∑
i=3

(f ′(z)pi−1 +Qi−2)
∂

∂pi
.

Clearly, {A,B} pointwisely span a rank-distribution D10 on M (k) and ψ is a first integral of D10.

Step 3. The rest of the proof amounts to taking Lie brackets in clever ways so as to lead to the desired rank
argument about D∞10.

First, we compute

[A,B] = f ′(z)
∂

∂p1
+ f ′′(z)p1

∂

∂p2
+

k+1∑
i=3

(
f ′′(z)pi−1 +

∂Qi−2

∂z

)
∂

∂pi
.

Comparing the expressions of [A,B] and B, Lie had the idea of considering the combinations

f ′(z)B − f(z)[A,B], f ′′(z)B − f ′(z)[A,B],

and noted that, if (f ′)2 − f ′′f is non-vanishing, then one can scale to obtain

M =
1

(f ′)2 − f ′′f
(f ′(z)B − f(z)[A,B]) =

f ′

(f ′)2 − f ′′f
∂

∂y
+ p1

∂

∂p2
+

k+1∑
i=3

(pi−1 + Si−2)
∂

∂pi
,

N =
1

(f ′)2 − f ′′f
(f ′′(z)B − f ′(z)[A,B]) = − f ′′

(f ′)2 − f ′′f
∂

∂y
+

∂

∂p1
+

k+1∑
i=3

Ti−2
∂

∂pi
,

where Si, Ti are z-polynomials of level i with weight ≤ i+ 1.
Now, define let N (0) = N and define N (k) (k ≥ 1) by the formula

N (k) = [M,N (k−1)].

We have

N (1) =
∂

∂p2
+

k+1∑
i=3

V
(1)
i−2

∂

∂pi
,

where, for each i ∈ {3, 4, ..., k + 1},

V
(1)
i−2 =

∂Ti−2

∂p2
p1 +

∂Si−2

∂p1
+

k+1∑
j=3

(pj−1 + Sj−2)
∂Ti−2

∂pj
+

k+1∑
j=3

(
∂pi−1

∂pj
+
∂Si−2

∂pj
Tj−2

)
is easily seen to be a z-polynomial of level i− 2 with weight ≤ i− 2. Indeed, more can be proven:

Lemma 3. For j = 1, ..., k + 1 there exist z-polynomials V
(j)
i of level i and of weight ≤ i such that

N (j) = (−1)j+1 ∂

∂pj+1
+

k+1∑
i=j+2

V
(j)
i−j−1

∂

∂pi
.

Proof of Lemma 3 is included in Appendix II. Letting j = k in the lemma, we have

N (k) = (−1)k+1 ∂

∂pk+1
.

Tracing back, it is easy to see that

〈A,B,M,N,N (1), ..., N (k)〉 = 〈∂y, ∂z, ∂p1 , ..., ∂pk+1
〉.

Consequently, the differential of ψ must be a multiple of dx.
Finally, I remark that the the only functions f(z) satisfying f ′′f = (f ′)2 are of the form f(z) = λeµz, where

λ, µ are constants. This completes the proof of Lie’s theorem.
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3. Further Questions

1. The notion of Darboux integrability at level k appears by definition more restricted than the notion of the
k-th prolongation of a system being Darboux integrable. The latter is essentially what’s being used for proving
that Darboux’s method works. Is there any hyperbolic system whose k-th prolongation is Darboux integrable
but is itself not Darboux integrable at level k?
2. In the same spirit as the previous question, is there any f -Gordon equation not locally equivalent to either
zxy = 0 or zxy = ez whose k-th prolongation (for some k) is Darboux integrable?

4. Appendix I. Conventions on Notations

I use the round bracket (...) to express a coframing on a manifold. Differential or algebraic ideals generated
by certain differential forms are put in curled brackets such as {...}diff or {...}alg. Sometimes, the plain {...}
is used to mean {...}diff . The angled bracket 〈...〉, with input(s) being either sections of a vector bundle or
generators of a vector space, means the linear-generation of a vector bundle or a vector space.

A differential ideal will be denoted using script letters such as I, J , K. The set of k-forms in a differential
ideal I is denoted as Ik. The vector bundle associated to Ik is denoted as Ik. The k-th prolongation of I has

the notation I(k). To avoid confusion, I use (I(k))1 rather than I
(k)
1 to denote the vector bundle of 1-forms in

I(k), since the latter may be mistakenly understood as the k-th prolongation of the Pfaffian system generated by

I1. For a Pfaffian system such as Ξ
(k)
10 , the same notation can be used to represent the vector bundle generated

by all the 1-forms in Ξ
(k)
10 , or the differential ideal whose elements are local sections of vector bundles. The

k-th derived system of a Pfaffian system I, which is also Pfaffian, has the notation I〈k〉. If the derived (partial)
flag ... ⊂ I〈2〉 ⊂ I〈1〉 stabilizes at some I〈s〉, then I〈s〉 is naturally the maximal Frobenius subsystem of I, and
is given the notation I〈∞〉. To conclude by an example, the third derived system of the system algebraically

generated by the 1-forms in the second prolongation of I is denoted as (I(2))
〈3〉
1 .

All problems in the range of this exposition are local, so when I write, for instance, “condition C holds on
M”, what I really mean is “condition C holds on some open subset U ⊂ M”. Sometimes, when multiple such
open subsets are concerned, one might worry about empty overlaps. In such cases, one could first ask whether
or not the open subset U can be chosen to be dense in M .

5. Appendix II. Proofs of Lemmas

Proof of Lemma 1 and Lemma 2. By the previous calculation, it is clear that this lemma holds for k = 1, 2, 3.
Therefore, it suffices to carry out the inductive step from k to k + 1. By 1-adaptedness of the coframing

(θ, θ10, ..., θk0, θ01, ..., θ0k, πk+1,0, dx, π0,k+1, dy),

one can introduce new coordinates pk+2, qk+2 such that the Pfaffian system I(k+1) is given by

I(k+1) = {θ, θ10, ..., θk0, θk+1,0, θ01, ..., θ0k, θ0,k+1},

where

θk+1,0 = πk+1,0 − pk+2dx, θ0,k+1 = π0,k+1 − qk+1dy.

Clearly, on M (k+1),

dθj0 ≡ −θj+1,0 ∧ dx mod θ, θ10, ..., θj−1,0, (j = 1, ..., k).

Furthermore,

dθk+1,0 = dπk+1,0 − dpk+2 ∧ dx

= −

(
f ′′(z)dz + f ′(z)dpk +

∂Qk−1

∂z
dz +

k−1∑
i=1

∂Qk−1

∂pi
dpi

)
∧ dy − dpk+2 ∧ dx

≡ −

(
f ′′(z)p1 + f ′(z)pk+1 +

∂Qk−1

∂z
p1 +

k−1∑
i=1

∂Qk−1

∂pi
pi+1

)
dx ∧ dy − dpk+2 ∧ dx

mod θ, θ10, ..., θk0.

If we let

Qk = f ′′(z)p1 +
∂Qk−1

∂z
p1 +

k−1∑
i=1

∂Qk−1

∂pi
pi+1,

and use the inductive assumption that for each i ∈ {1, 2, ..., k − 2}, Qi is a z-polynomials of level i and has
weight ≤ i+ 1, then it can be easily seen that Qk is a z-polynomial of level k and with weight ≤ k + 1.



DARBOUX INTEGRABILITY OF HYPERBOLIC SYSTEMS AND LIE’S THEOREM 9

As a result, define
πk+2,0 = dpk+2 − (f ′(z)pk+1 +Qk)dy,

and we have
dθk+1,0 ≡ −πk+2,0 ∧ dx mod θ, θ10, ..., θk0.

Since the argument for the the other characteristic system is completely analogous to the above, we have proven
Lemma 1 and 2.

Proof of Lemma 3. Note that if R1, R2 are two z-polynomials, then the weights satisfy

w(R1R2) ≤ w(R1)w(R2).

Here we did not specify the levels of R1, R2, since, in a sense, the weights give upper-bounds for the minimal
levels. With this note, the proof of Lemma 3 reduces to pure calculations. Suppse that for some 1 ≤ j < k we
have

N (j) = (−1)j+1 ∂

∂pj+1
+

k+1∑
i=j+2

V
(j)
i−j−1

∂

∂pi
,

where each V
(j)
` is a z-polynomial of level i and with weight ≤ i. We compute, by letting g(z) = f ′/((f ′)2−f ′′f),

[M,N (j)] =

g(z)
∂

∂y
+ p1

∂

∂p2
+

k+1∑
i=3

(pi−1 + Si−2)
∂

∂pi
, (−1)j+1 ∂

∂pj+1
+

k+1∑
i=j+2

V
(j)
i−j−1

∂

∂pi


= (−1)j+2

k+1∑
i=3

∂

∂pj+1
(pi−1 + Si−2)

∂

∂pi
+

k+1∑
`=j+2

k+1∑
i=3

(pi−1 + Si−2)
∂V

(j)
`−j−1

∂pi

∂

∂p`

−
k+1∑
`=3

k+1∑
i=j+2

V
(j)
i−j−1

∂(p`−1 + S`−2)

∂pi

∂

∂p`
.

In the first term of the result above, the summation splits into

k+1∑
i=3

∂pi−1

∂pj+1

∂

∂pi
and

k+1∑
i=3

∂Si−2

∂pj+1

∂

∂pi
.

The former is simply
∂

∂pj+2
,

and the summation in the latter actually starts with i = j + 3. The weight of ∂Si−2

∂pj+1
is clearly ≤ i− j − 2.

For the second term, the outer summation can start from ` = j+ 3, since
∂V

(j)
1

∂pi
= 0 for i ≥ 3. The coefficient

of ∂
∂p`

are easily seen to have weight ≤ `− j − 2.

In the third term, the outer summation can start from ` = j + 3, since ∂(p`−1+S`−2)
∂pi

is identically zero for

` ≤ j + 3 and i ≥ j + 2. Evidently, the weight of the coefficient of ∂
∂` is ≤ i− j − 2.

To sum up, [M,N (j)] can be put in the form

[M,N (j)] = (−1)j+2 ∂

∂pj+2
+

k+1∑
i=j+3

V
(j+1)
i−j−2

∂

∂pi
,

where V i is a z-polynomial with weight ≤ i and hence is of level i. This completes the proof.
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