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In this note, I only consider 1-dimensional variational problems (i.e., variation by curves) where the variation
is smooth and compactly supported. By “a variation” I mean a map

Γ : (−ε, ε)× (a, b)→M,

where M is a smooth manifold and Γ(0, ·) is the initial curve. By “compactly supported” I mean that Γ(·, t) is
constant for all t outside a compact subset of (a, b). By “smooth” I mean Γ is smooth. From now on, the term
“variation” will be used carrying these meanings unless specified otherwise.

1. Classical Formulation and the Euler-Lagrange System

Let γ : (a, b)→ Rn represent a smooth curve in Rn. A classically well-known variational problem is searching
for the extremals of the Lagrangian functional

L =

∫ b

a

L(t, γ(t), γ′(t))dt

under variations of γ. One immediately notices the difference between the space on which L is defined and
the space on which a variation takes place. An easy fix to this is by considering variations in the space
J1(R,Rn) ∼= R × Rn × Rn with coordinates (t, (qi), (pi)), and restricting to curves along which the 1-forms
dqi − pidt vanish and the 1-form dt non-vanish. It is then clear that these variations correspond uniquely to
variations in Rn. (The descriptive term “compactly supported” plays a role here, since, for example, the lifting
to J1(R,Rn) of a variation in Rn with fixed end-points may not still have the end-points fixed.)

If we denote J1(R,Rn) as M , the vector subbundle of T ∗M spanned by dqi− pidt (i = 1, ..., n) as I, and the
1-form Ldt (on M) as φ. The Lagrangian variational problem as above is then encoded in the triple (M, I, φ).
To be precise, one searches for extremal curves with respect to the functional L(γ) =

∫
γ
φ under (compactly

supported) variations by integral curves of I. In the same manner, any triple (M, I, φ) in which M is a smooth
manifold, I ⊂ T ∗M a vector subbundle, and φ ∈ Ω1(M) a smooth 1-form represents a variational problem.

In particular, suppose that I = {0}, and let (s, t) 7→ Γ(s, t) be a variation. Denote the vector field Γ∗(∂s) as
X (extended smoothly to a neighborhood of γ, if needed), its flow as Φs, and Γ(s, ·) as γs. Thus, γs = Φs ◦ γ,
and

d

ds

∣∣∣∣
s=0

∫
γs

φ =
d

ds

∣∣∣∣
s=0

∫
Φs◦γ

φ =
d

ds

∣∣∣∣
s=0

∫
γ

Φ∗sφ =

∫
γ

d

ds

∣∣∣∣
s=0

Φ∗sφ =

∫
γ

LXφ =

∫
γ

d(X ⌟ φ) +X ⌟ dφ.

The integral
∫
γ
d(X ⌟ φ) vanishes by the compactly-supportedness assumption. Thus γ is an extremal if and

only if ∫
γ

X ⌟ dφ =

∫ b

a

dφ(X, γ′)dt = 0

for all compactly supported variational vector fields X. Since any compactly supported vector field Xγ along γ
could extend to a variational vector field, a necessary and sufficient condition for γ to be extremal is

γ′ ⌟ dφ ≡ 0.

Equivalently, letting X1, ..., Xn be local vector fields defined on U ⊂ M which span TxM at each x ∈ U , then
γ ⊂ U is an extremal of (M, I, φ) if and only if γ is an integral curve of the differential system

C(dφ) = {Xi ⌟ dφ}i=1,...,n.

This differential system is called the Euler-Lagrange system of (M, {0}, φ). In terms of exterior differential
systems, C(dφ) is the Cartan system of dφ and an integral curve γ of C(dφ) is called a characteristic of dφ.
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2. The Griffiths Formalism

Given a variational problem (M, I, φ), one could define an associated variational problem (Z, {0}, ζ) where
Z = I + φ ⊂ T ∗M is an affine subbundle of T ∗M and ζ is the canonical 1-form on Z. In coordinates, if locally
I has rank s with basis sections θ1, ..., θs, then a point z ∈ Z can be written as

z = φp + λiθ
i
p,

and

ζz = π∗φp + λiπ
∗θip,

where π : Z →M is the canonical submersion and p = π(z).
Griffiths proposes studying the variational problem (M, I, φ) through (Z, {0}, ζ), in light of the fact that

extremals of the latter satisfy the Euler-Lagrange system, which takes simple form. This would be a beautiful
story as long as correspondence between extremals of these two variational problems can be established. Indeed,
it is proven in [Bryant87] that

Any extremal of (Z, {0}, ζ) projects via π to be an extremal of (M, I, φ).

The proof is in fact quite simple. Since any extremal γ on Z must integrate the Euler-Lagrange system, we
have

γ′ ⌟ dζ = 0,

where

dζ = dπ∗φ+ dλi ∧ π∗θi + λidπ
∗θi.

Modulo 1-forms that are semi-basic to π, it is easy to see that γ′ ⌟dζ is congruent to −θi(π∗γ′)dλi, which shows
that π◦γ is an integral curve of I; also, it is easy to see that γ′ cannot be a combination of ∂λi alone, hence π◦γ
is an immersed curve in M . Moreover, letting αs be a variation of π ◦ γ by integral curves of I with α0 = π ◦ γ,
any lifting γs of αs to Z with γ0 = γ is easily seen to satisfy∫

γs

ζ =

∫
αs

φ.

Clearly, α0 = π ◦ γ is an extremal since γ0 = γ is.
However, the converse question turns out to be subtle:

Which extremals of (M, I, φ) arise as projections of extremals of (Z, {0}, ζ)?

The subtlety can be partially seen through the existence of rigid integral curves of certain (M, I, φ), where,
by γ being “rigid” I mean any smooth compactly supported variation of γ by integral curves of I is only a
reparametrization of γ itself. Such γ’s can certainly be understood as extremals of (M, I, φ), but their liftings
to (Z, {0}, ζ) need not satisfy the Euler-Lagrange system. (Intuitively, the rigid integral curves may have
sufficient vector fields along them that are first order candidates for a variation, but a vector fields as such may
not admit an extension to an actual variational vector field.)

As a sufficient condition, [Hsu92] obtains:

Any regular extremal of (M, I, φ) has a unique lifting to an extremal of (Z, {0}, ζ).

Of course, I need to explain what is meant by “regular”. In [Hsu92], the definition of regularity is via the
surjectivity of a holonomy map . To make sense of this, it requires a discussion of the variational equations
(roughly, these are equations that give necessary conditions for a vector field along an integral curve γ of I to
be associated to a variation by integral curves of I); and perhaps also a discussion about a consequence of the
holonomy map’s being surjective, which is, solutions to the variational equations are actual variational vector
fields. Taking this approach would almost certainly digress too far away from my purpose of this note. Indeed,
[Hsu92] shows that there is a characterization of regularity which is equivalent to its original definition. Here I
shall take this equivalent characterization as the definition for simplicity:

An integral curve γ of I is said to be regular if any lifting of γ to Z0 = I ⊂ T ∗M to be a
charactersitic of dζ0 intersects the zero section of Z0; where ζ0 is the canonical 1-form defined
on Z0.

As a result of Hsu’s theorem, regular extremals of (M, I, φ) can be studied by lifting regular integral curves
of I to Z and examine whether or not the liftings integrate the Euler-Lagrange system of (Z, {0}, ζ). The power
of this idea can be seen via several examples which I’ll give next.
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3. Examples

3.1. Geodesics on a Riemannian Surface.
Let (Σ, g) denote a Riemannian surface, F (Σ) its orthonormal frame bundle. On F (Σ), one can define three

1-forms ω1, ω2, ρ which satisfy the structure equations

dω1 = ρ ∧ ω2,

dω2 = −ρ ∧ ω1,

dρ = −Kω1 ∧ ω2,

where K is a function which is constant on the fibers of the submersion F (Σ) → Σ, hence an invariant of the
surface. Indeed, K is simply the well-known Gauss curvature of (Σ, g).

Given a smooth immersed curve γ in Σ, parametrized by arclength parameter s, there is a unique way to
attach an orthonormal frame (e1, e2) along γ such that γ′ = e1 and the pair (e1, e2) agrees with the orientation
of Σ. This lifting of γ to F (Σ), say γ̂, satisfies

γ̂∗ω1 = ds, γ̂∗ω2 = 0,

and there exists a function κ along γ̂ such that

γ̂∗ρ = κ · γ̂∗ω1;

this κ is known as the geodesic curvature of γ.
Now, consider the variational problem (M, I, φ), where M = F (Σ), I = {ω2}, and φ = ω1. This is clearly a

variational problem whose extremals are length-minimizing curves. Suppose that α : (a, b)→ M is an integral
curve of I, we proceed to examine the condition for α to be regular.

On Z0 = I ⊂ T ∗M , the canonical 1-form ζ0 can be written as (dropping the pull-back symbols for simplicity)

ζ0 = λω2,

hence

dζ0 = dλ ∧ ω2 − λρ ∧ ω1.

The Cartan system C(dζ0) is therefore generated by the 1-forms

dλ, ω2, λρ, λω1.

Clearly, along any lifting of α, we have ω1 6= 0; thus the only possibility for such a lifting to integrate C(dζ0) is to
lift to the zero section, i.e., λ ≡ 0. Therefore, by our definition, all integral curves of I in M are regular; hence
extremals of (M, I, φ) and those of (Z, {0}, ζ) have one-to-one correspondence, according to Hsu’s theorem.

On (Z, {0}, ζ), a point can be written as

z = ω1 + λω2.

With this notation, and dropping the pull-back symbols for simpicity, we have

ζ = ω1 + λω2.

As a result,

dζ = ρ ∧ ω2 + dλ ∧ ω2 − λρ ∧ ω1.

The Euler-Lagrange system on Z is then generated by the 1-forms

ω2 − λω1, ω2, dλ+ ρ, λρ.

Since, along α, the pull-back of ω2 vanishes; the same holds for any lifting of α. Hence, the vanishing of the
1-forms in the Euler-Lagrange system restricts on any lifting to be equivalent to the equations

λ = κ = 0.

This implies that, α has a lifting to Z to be an extremal (which is equivalent to α itself being an extremal) if
and only if α has zero geodesic curvature, or, simply, α is a geodesic.
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3.2. The Poincaré Problem.
Let (Σ, g) denote a Riemannian surface which is diffeomorphic to S2. Suppose that γ is a smooth simple

closed curve on Σ which, according to its orientation, encloses a piece of surface Ω ⊂ M with ∂Ω = γ. The
Poincaré problem seeks such a γ with minimal length so that the total curvature∫

Ω

KdA

of the enclosed surface is some prescribed constant K0. According to the Gauss-Bonnet formula,∫
Ω

KdA+

∫
γ

κds = 2π,

the integral constraint may be rewritten as∫
γ

κds = K1 = 2π −K0.

As in the previous example, this variational problem is best described using the frame bundle F (Σ). To
deal with the integral constraint, we consider instead the space F (Σ) × R as M , where R has coordinate z,
and restrict to variations by integral curves of I = {ω2, dz − ρ}. The reason of doing so is that, along an
integral curve of ω2, the 1-form ω1 has the natural interpretation as ds where s is the arclength parameter of
the corresponding curve in Σ; and ρ has the interpretation of being κds. A compactly supported variation αs
in the space F (M)× R will then necessarily preserve

∫
α0
dz, which is exactly

∫
γ
κds. To complete the setting,

let φ = ω1, so (M, I, φ) is a variational problem corresponding to the Poincaré problem.
To see which integral curves of I are regular, we simply note that the canonical 1-form on Z0 = I ⊂ T ∗M

can be written as

ζ0 = λ1ω
2 + λ2(dz − ρ),

where λ1, λ2 are coordinates on the fibers of Z0 →M . Exterior differentiation gives

dζ0 = dλ1 ∧ ω2 − λ1ρ ∧ ω1 + dλ2 ∧ (dz − ρ) + λ2Kω
1 ∧ ω2.

The Cartan system of dζ0 is then generated by the 1-forms

ω2, dz − ρ, dλ1 + λ2Kω
1, λ1ρ+ λ2Kω

2, dλ2, λ1ω
1.

Suppose that γ is an integral curve of I, then any lifting of γ to Z0 must satisfy ω2 = dz − ρ = 0. Hence, the
Cartan system restricted to a lifting of γ reduce to the equations

λ1 = 0, λ′2 = 0, λ2K = 0,

where the derivatives are taken with respect to s defined by ds = γ∗ω1. It is clear that (λ1(s), λ2(s)) satisfying
the equations above must vanish for some s if and only if K|γ is not identically zero. This gives the charac-
terization for γ to be regular. In particular, if on Σ we have K > 0 everywhere (in other words, Σ is a convex
surface), then all integral curves of I in M are regular.

To see which regular integral curves of I are extremals, note that the canonical 1-form on Z = ω1 + I can be
written as

ζ = ω1 + λ1ω
2 + λ2(dz − ρ).

Thus,

dζ = ρ ∧ ω2 + dλ1 ∧ ω2 − λ1ρ ∧ ω1 + dλ2 ∧ (dz − ρ) + λ2Kω
1 ∧ ω2.

The corresponding Cartan system is easily seen to be generated by

ω2, dz − ρ, λ1ρ+ λ2Kω
2, dλ1 + ρ+ λ2Kω

1, dλ2, ω2 − λ1ω
1.

Since γ is assumed to be an integral curve of I, the vanishing of these 1-forms on a lifting is equivalent to the
equations

λ1 = 0, λ′2 = 0, κ+ λ2K = 0.

Hence, such a lifting exists if and only if, along γ, we have κ = cK for some constant c. In other words, regular
extremals in (M, I, φ) are characterized by the condition that the ratio between the geodesic and the Gauss
curvatures along γ is a constant.

In particular, if K > 0 everywhere on Σ and K1 = 2π −K0 is chosen to be zero (i.e., the curves γ are those
that bisect the total curvature of Σ); all extremals of (M, I, φ) must be regular. Supposing that γ is such an
extremal, we have ∫

γ

κds =

∫
γ

cKds = 0,
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and by the positivity of K, the constant c must be zero. As a result, κ ≡ 0 along γ. This proves the well-known
theorem of Poincaré:

A smooth curve that bisects the total curvature of a compact convex surface must be a geodesic.

Further questions: It is pointed out in [Hsu92] that, even on a convex Riemannian surface Σ, the question of
whether or not there exists a simple closed curve on Σ along which κ = cK for some given constant c is subtle
and worth further investigation. Also, noting that Hsu’s theorem is only a sufficient condition for an extremal
in (M, I, φ) to arise from Euler-Lagrange equations, one could ask whether or not the regularity condition rules
out interesting extremals in M .
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