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Abstract We study general properties of Hodge-type decompositions of cyclic and
Hochschild homology of universal enveloping algebras of (DG) Lie algebras. Our
construction generalizes the operadic construction of cyclic homology of Lie algebras
due to Getzler and Kapranov. We give a topological interpretation of such Lie Hodge
decompositions in terms of S1-equivariant homology of the free loop space of a simply
connected topological space. We prove that the canonical derived Poisson structure
on a universal enveloping algebra arising from a cyclic pairing on the Koszul dual
coalgebra preserves the Hodge filtration on cyclic homology. As an application, we
show that the Chas–Sullivan Lie algebra of any simply connected closed manifold
carries a natural Hodge filtration. We conjecture that the Chas–Sullivan Lie algebra is
actually graded, i.e. the string topology bracket preserves the Hodge decomposition.
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1 Introduction and main results

It is well known that the cyclic homology of any commutative (DG) algebra A has a
natural decomposition
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HC•(A) ∼=
∞⊕

p=1

HC(p)• (A), (1.1)

which (in the case when A is smooth) arises from a Hodge-style truncation of the de
Rham complex of A. This decomposition is usually called the Hodge decomposition
of HC•(A), and it can indeed be linked to the classical Hodge theory in algebraic
geometry (see [7,19,29,36] or [28]).

In [2], we have found that a direct sum decomposition similar to (1.1) exists for the
universal enveloping algebra Ua of any (DG) Lie algebra a :

HC•(Ua) ∼=
∞⊕

p=1

HC(p)• (a). (1.2)

The direct summandsHC(p)• (a) of (1.2) appear in [2] as domains of certain (derived)
character maps Trg(a) : HC(p)• (a) → H•(a, g) taking values in representation
homology of a in a finite-dimensional Lie algebra g; in terms of these maps, we
have given a new homological interpretation of the (strong) Macdonald Conjecture
for a reductive Lie algebra g (see [2], Section 9).

The purpose of this paper is two-fold. First, we study general properties of the
Hodge-type decomposition (1.2) for an arbitrary Lie algebra a. We extend the con-
struction of [2] to the Hochschild homology of Ua and show how the resulting
homology theories HC(p)• (a) and HH(p)• (a) generalize the operadic construction of
cyclic/Hochschild homology for Lie algebras due to Getzler–Kapranov [20]. Further-
more, we give a natural topological interpretation of the decomposition (1.2) in terms
of Frobenius operations on S1-equivariant homology HS1• (LX,Q) of the free loop
space of a simply connected topological space X .

Our second goal is to clarify the relation of (1.2) to a canonical derived Poisson
structure onUa introduced in [1]. This Poisson structure comes froma cyclic pairing on
the Koszul dual coalgebra of a, and our main observation is that the corresponding Lie
bracket on cyclic homology of Ua preserves the Hodge filtration associated to (1.2).
The motivation for studying such cyclic Poisson structures comes from topology: it is
known that the Chas–Sullivan Lie algebra of a simply connected closed manifold M
is an example of a derived Poisson algebra associated with a natural cyclic pairing on
the Lambrechts–Stanley model of M (see [1], Section 5.5). Thus, our results imply
that the Chas–Sullivan Lie algebra of M carries a natural filtration. We actually expect
that the string topology bracket on M preserves the Hodge decomposition (1.2) (cf.
Conjecture 1 in Sect. 4).

We now proceed with a more detailed discussion of results of the paper. We begin
by reviewing the derived functor construction of the Hodge decomposition (1.2) given
in [2].

Let k be a field of characteristic 0. Given a Lie algebra a over k, we consider the
symmetric ad-invariant k-multilinear forms on a of a (fixed) degree p ≥ 1. Every
such form is induced from the universal one: a × a × · · · × a → λ(p)(a) , which
takes its values in the space λ(p)(a) of coinvariants of the adjoint representation of



Dual Hodge decompositions and derived Poisson brackets

a in Sym p(a) . The assignment a �→ λ(p)(a) defines a (non-additive) functor on the
category of Lie algebras that extends in a canonical way to the category of DG Lie
algebras:

λ(p) : DGLAk −→ Comk, a �→ Sym p(a)/[a,Sym p(a)]. (1.3)

The category DGLAk has a natural model structure (in the sense of Quillen [32]), with
weak equivalences being the quasi-isomorphisms ofDGLie algebras. The correspond-
ing homotopy (derived) category Ho(DGLAk) is obtained from DGLAk by localizing at
the class of weak equivalences, i.e. by formally inverting all the quasi-isomorphisms in
DGLAk . The functor (1.3), however, does not preserve quasi-isomorphisms and hence
does not descend to the homotopy category Ho(DGLAk). To remedy this problem, one
has to replace λ(p) by its (left) derived functor

Lλ(p) : Ho(DGLAk) → D(k), (1.4)

which takes its values in the derived categoryD(k) of k-complexes.Wewrite HC(p)• (a)
for the homology of Lλ(p)(a) and call it the Lie-Hodge homology of a.

For p = 1, the functor λ(1) is just abelianization of Lie algebras; in this case, the
existence of Lλ(1) follows from Quillen’s general theory (see [32, Chapter II, §5]),
and HC(1)• (a) coincides (up to shift in degree) with the classical Chevalley–Eilenberg
homology H•(a, k) of the Lie algebra a. For p = 2, the functor λ(2) was introduced
by Drinfeld [13]; the existence of Lλ(2) was established by Getzler and Kapranov
[20] who suggested that HC(2)• (a) should be viewed as an (operadic) version of cyclic
homology for Lie algebras. One of the key results of [20] is the existence of Connes’
type periodicity sequence for Lie cyclic homology, which (in the notation of [20], see
Sect. 2.3 below) reads

. . . → HAn−1(Lie, a) → HBn−1(Lie, a) → HCn−1(Lie, a)

→ HAn−2(Lie, a) → . . . (1.5)

Now, for an arbitrary p ≥ 1, the existence of the derived functor Lλ(p) was proven in
[2, Theorem 7.1], using some elementry homotopical arguments from [4] (cf. Sect. 2.1
below).

To construct the direct sum decomposition (1.2) we observe that each λ(p) comes
together with a natural transformation to the composite functor U� := ( – )� ◦ U :
DGLAk → DGAk/k → Comk , where ( – )� denotes the cyclic functor R �→
R/(k +[R, R]) on the category of (augmented) associative DG algebras. The natural
transformations λ(p) → U� are induced by the symmetrization maps

Sym p(a) → Ua, x1x2 . . . x p �→ 1

p!
∑

σ∈Sp

± xσ(1) · xσ(2) · . . . · xσ(p), (1.6)

which, by the Poincaré–Birkhoff–Witt Theorem, assemble to an isomorphism of DG
a-modules Symk(a)

∼= Ua . From this, it follows that λ(p) → U� assemble to an
isomorphism of functors
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∞⊕

p=1

λ(p) ∼= U�. (1.7)

On the other hand, by a theorem of Feigin and Tsygan [18] (see also [4]), the functor
( – )� has a left derived functor L( – )� : Ho(DGAk/k) → D(k) that computes the
reduced cyclic homology HC•(R) of an associative algebra R ∈ DGAk/k . Since
U preserves quasi-isomorphisms and maps cofibrant DG Lie algebras to cofibrant
DG associative algebras, the isomorphism (1.7) induces an isomorphism of derived
functors from Ho(DGLAk) to D(k):

∞⊕

p=1

Lλ(p) ∼= L( – )� ◦ U . (1.8)

At the level of homology, (1.8) yields the direct decomposition (1.2) (cf. [2, Theo-
rem 7.2]). As explained in [2], the existence of (1.8) is related to the fact that Ua is
a cocommutative Hopf algebra, and in a sense, the Lie Hodge decomposition (1.2) is
Koszul dual to the classical Hodge decomposition (1.1) for commutative algebras.

In the present paper, we extend the above derived functor construction to the
Hochschild homology of Ua :

HH•(Ua) ∼=
∞⊕

p=0

HH(p)• (a), (1.9)

and relate (1.9) to the Hodge decomposition (1.2) of the cyclic homology of Ua. More
precisely, we prove the following result (cf. Theorem 2.2 and Theorem 2.3 in Sect. 2).

Theorem 1.1 For any (DG) Lie algebra a, the Connes periodicity sequence for Ua
decomposes into a natural direct sum of Hodge components, each of which is itself a
long exact sequence:

. . . → HC(p+1)
n−1 (a)

B−→ HH(p)
n (a)

I−→ HC(p)
n (a)

S−→ HC(p+1)
n−2 (a) → . . .

For p = 1, the above exact sequence is precisely the Getzler–Kapranov exact sequence
(1.5).

Next, we explain a topological meaning of the decompositions (1.2) and (1.9).
Our starting point is a fundamental theorem of Quillen [33] that assigns to every 1-
connected topological space X a DG Lie algebra aX over Q, called a Lie model of
X . The Lie algebra aX determines the rational homotopy type of X and thus deter-
mines any homotopy invariant of X defined over Q. In particular, it is known [31]
that the universal enveloping algebra UaX is quasi-isomorphic to the singular chain
algebraC•(�X,Q) of the based loop space�X of X , while the Hochschild and cyclic
homology of UaX are isomorphic respectively to the rational homology and rational
S1-equivariant homology of the free loop space LX of X (see [22,23] and also [24]):

HH•(UaX ) ∼= H•(LX,Q), HC•(UaX ) ∼= H
S1

• (LX,Q). (1.10)
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In view of (1.10), it is natural to ask if the Hodge decompositions (1.2) and (1.9) for
aX can be interpreted in terms of homology of LX . To answer this question we recall
that the free loop space LX := Map(S1, X) carries a natural circle action (induced by
the action of S1 on itself). Considering the n-fold covering of the circle: S1 → S1,
eiθ �→ einθ , we may define, for each n ≥ 0, Q-linear graded endomorphisms on the
homology of LX called the Frobenius operations (see Sect. 4.1 for details):

�n
X : H•(LX,Q) → H•(LX,Q), �̃n

X : H
S1

• (LX,Q) → H
S1

• (LX,Q).

Now, let H
(p)

• (LX,Q) and H
S1, (p)

• (LX,Q) denote the common eigenspaces of these
Frobenius operations (�n

X and �̃n
X , respectively), corresponding to the eigenvalues

n p for all n ≥ 0. Then, we have the following theorem (cf. Theorem 4.2 in Sect. 4),
which is our second main result in the paper.

Theorem 1.2 For each p ≥ 0, there are natural isomorphisms of graded vector
spaces

HH
(p)

• (aX ) ∼= H
(p)

• (LX,Q), HC
(p)

• (aX ) ∼= H
S1, (p−1)
• (LX,Q)

compatible with the isomorphisms (1.10).

We prove Theorem 1.2 by dualizing the classical Hodge decomposition (1.1) for
Sullivan’s commutative DG algebra model of X constructed in [8].

In Sect. 3, we turn to derived Poisson structures. This notion was introduced in [1]
as a natural homological extension of an H0-Poisson structure proposed by Crawley-
Boevey [12]. Roughly speaking, a Poisson structure on an (augmented) DG algebra
A is a DG Lie algebra structure on the cyclic space A� := A/(k + [A, A]) induced
by derivations of A (see Sect. 3.1 for a precise definition). We introduce a category
of Poisson DG algebras, DGPAk , together with an appropriate class of weak equiva-
lences. Ideally, one would like to make DGPAk a (closed) model category in order to
define a well-behaved homotopy category Ho(DGPAk) to deal with homotopy invari-
ant structures on DGPAk . Although we do not achieve this goal in the present paper,
we observe (see Proposition 3.1) that DGPAk has a weaker property of being a (sat-
urated) homotopical category in the sense of Dwyer–Hirschhorn–Kan–Smith [15].
Thanks to general results of [15], this property still allows one to define a homo-
topy category Ho(DGPAk) that has good formal properties and supports a meaningful
theory of derived functors. Having defined the homotopy category Ho(DGPAk) of
Poisson DG algebras, we then define a derived Poisson algebra to be simply an
object1 of Ho(DGPAk). The key result here is Proposition 3.3 which says that the
cyclic homology of any derived Poisson algebra A carries a well-defined bracket
{ –, – } : HC•(A) × HC•(A) → HC•(A) , making HC•(A) a (graded) Lie algebra.
In Sect. 3.1, following [1], we consider a particular class of derived Poisson struc-

tures on Ua that arise from a cyclic pairing on the Koszul dual coalgebra of a. We

1 For technical reasons, we will also assume that the associative DG algebra A on which we put a Poisson
structure is cofibrant as an object of DGAk/k .
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call such derived Poisson structures cyclic. The following theorem clarifies the rela-
tion between cyclic Poisson structures and the Hodge decomposition (1.2) of Ua (cf.
Theorem 3.3 in Sect. 3).

Theorem 1.3 The Lie bracket on HC•(Ua) induced by a cyclic derived Poisson struc-
ture on Ua preserves the Hodge filtration:

FpHC•(Ua) :=
⊕

r≤p+2

HC(r)• (a),

thus making HC•(Ua) a filtered Lie algebra. Moreover, in general, we have
{
HC(1)• (a), HC(p)• (a)

}
⊆ HC(p−1)• (a) and

{
HC(2)• (a), HC(p)• (a)

}
⊆ HC(p)• (a), ∀ p ≥ 1.

In particular, HC(2)• (a) is a Lie subalgebra of HC•(Ua) and HC•(Ua) is a graded
Lie module over HC(2)• (a).

We illustrate Theorem 1.3 in a number of explicit examples, which include abelian,
unimodular and necklace Lie algebras (see Sect. 3.5). In particular, in the case of
necklace Lie algebras, we show that the Lie bracket on HC•(Ua) induced by a cyclic
Poisson structure does not preserve the Hodge decomposition (1.2). Thus, the result
of Theorem 1.3 cannot be strengthened in the obvious way.

Finally, we apply the results of Theorem 1.2 and Theorem 1.3 to the string topology
Lie algebra of Chas and Sullivan [9]. We recall that Chas and Sullivan have shown

that the S1-equivariant homology H
S1

• (LM,Q) of the free loop space of any smooth
compact oriented manifold M carries a natural Lie algebra structure. Their construc-
tion uses the transversal intersection product of chains which is difficult to realize
algebraically in general (cf. [10]). However, if M is simply connected, a theorem of
Lambrechts and Stanley [27] provides a finite-dimensional commutative DG algebra
model for M , whose linear dual coalgebra is Koszul dual to Quillen’s Lie model aM .
The Lambrechts–Stanley algebra comes with a natural cyclic pairing which yields a
cyclic pairing on the dual coalgebra. Now, it turns out that the associated cyclic Pois-
son structure on UaM induces a Lie bracket on HC•(UaM ) that corresponds (under

the isomorphism (1.10)) precisely to the Chas–Sullivan bracket on H
S1

• (LM,Q). As
mentioned above, this fact was the main motivation for us to introduce and study
derived Poisson structures in general (see [1]).

Our last theorem in this Introduction gathers together some properties of the Chas–
Sullivan Lie algebras arising from results of the present paper. (cf. Theorem 4.3 in
Sect. 4).

Theorem 1.4 Let M be a simply connected smooth oriented closed manifold of dimen-
sion d. (i) The string topology Lie algebra of M is filtered as a Lie algebra, with Lie
bracket of degree 2 − d preserving the following Hodge filtration

FpH
S1

• (LM,Q) :=
⊕

q≤p+1

H
S1, (q)

• (LM,Q).
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(i i) The homology H•(LM,Q) of the free loop space LM is filtered as a Lie module
over the string topology Lie algebra of M with respect to the following Hodge filtration

FpH•(LM,Q) :=
⊕

q≤p+2

H
(q)

• (LM,Q).

(i i i) The string topology Lie bracket restricts to the first Hodge component

H
S1, (1)
• (LM,Q), making it a Lie algebra. Further, H

S1

• (LM,Q) is a graded Lie

module over H
S1, (1)
• (LM,Q) with the grading given by the Hodge decomposition of

H
S1

• (LM,Q).

We believe that, unlike Theorem 1.3, Theorem 1.4 may be strengthened. In particu-
lar, we expect that the Chas–Sullivan Lie bracket of a closed d-dimensional manifold
preserves not only the Hodge filtration but actually the Hodge decomposition (1.2),
thus making the string topology Lie algebra a graded Lie algebra with respect to
p-degree:

{
H

S1, (p)

• (LM,Q), H
S1, (q)

• (LM,Q)

}
⊆ H

S1, (p+q−1)
• (LM,Q), ∀ p, q ≥ 1.

This is part of a more general Conjecture 1 stated in Sect. 4.

Notation

Throughout this paper, we denote by DGAk/k (resp., DGCAk/k) the category of aug-
mented, non-negatively graded DG algebras (resp., commutative DG algebras). The
category of non-negatively graded co-augmented, conilpotent DG coalgebras (resp.,
cocommutative DG coalgebras) will be denoted by DGCk/k (resp., DGCCk/k). The
category of non-negatively graded DG Lie algebras will be denoted by DGLAk .

For R ∈ DGAk/k , let R� := R/(k + [R, R]). For an R-bimodule M , let M� :=
M/[R, M]. Let �1R denote the kernel of the multiplication map R ⊗ R −→ R (where
R ⊗ R is equipped with the outer R-bimodule structure). The DG R-bimodule �1R
represents the complexof derivationsDer(R, M). In particular, the universal derivation
∂ : R −→ �1R is given by r �→ r ⊗ 1 − 1 ⊗ r .

2 Hodge decomposition for universal enveloping algebras

In this section, we construct a Hodge decomposition of Hochschild homology for the
universal enveloping algebras of DG Lie algebras. The corresponding Hodge compo-
nents are defined in terms of derived functors, similar to the definition of the cyclic
Lie-Hodge homology given in [2]. The main results of this sections (Theorem 2.2 and
Theorem 2.3) explain the relation of our construction to the earlier work of Getzler
and Kapranov [20].
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2.1 Hodge decomposition of Hochschild homology

Let a be a DG Lie algebra, and let V be a right DG a-module. Using the action map
on V :

V ⊗ a → V, v ⊗ x �→ v · x,

wedefine a complex of vector spaces, θ(a, V ) , by factoringV ⊗amodulo the relations

v ⊗ [x, y] = v · x ⊗ y − (−1)|x ||y|v · y ⊗ x, ∀ v ∈ V, ∀ x, y ∈ a.

The action map V ⊗ a → V then factors through θ(a, V ), giving a canonical mor-
phism of complexes

βV : θ(a, V ) −→ V . (2.1)

For example, if V = k is the trivial a-module, then θ(a, k) ∼= a/[a, a] , and (2.1) is
the zero map. On the other hand, for V = Ua equipped with the (right) adjoint action
of a , the complex θ(a,Ua) can be identified with�1(Ua)� , and the map (2.1) is given
by

βU : �1(Ua)� → Ua, [α ⊗ y] �→ [α, y], (2.2)

where α ∈ Ua, y ∈ a, and [α ⊗ y] denotes the class of α ⊗ y in �1(Ua)�.
Now, fix an integer p ≥ 0 and let V = Sym p(a) be the p-th symmetric power of

a equipped with the right adjoint action. Write βp(a) : θ(a,Sym p(a)) → Sym p(a)
for the corresponding map (2.1) and define

φ(p)(a) :=
{

θ(a, k)[1] if p = 0

Cone[βp(a)] if p ≥ 1

Futhermore, define φ(a) to be the cone of the map (2.2) composed with the natural
projection:

φ(a) := Cone

[
�1(Ua)� βU−→ Ua � Ua

]
.

Clearly, φ(p) and φ are functors on the category of DG Lie algebras; moreover,
since the functor λ(p) : DGLAk → Comk introduced in (1.3) is given by λ(p)(a) =
Coker[βp(a)] , there is a natural transformation of functors

I : φ(p) → λ(p), (2.3)

defined by the canonical map Cone[βp(a)] → Coker[βp(a)] .
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Proposition 2.1 below shows that, although φ(p), φ : DGLAk → Comk are not left
Quillen functors,2 they admit left derived functors in the sense of [32]. The proof of
this fact is similar to that of [2, Theorem 7.1]. For reader’s convenience, we provide
some more details. We begin with a simple description of homotopies in the category
of DG Lie algebras which may be of independent interest.3

Let � := �(t, dt) denote the de Rham algebra of the affine line A1
k equipped with

homological grading (so that |dt | = −1). Since � is a commutative DG algebra,
a ⊗ � has a natural DG Lie algebra structure for any DG Lie algebra a, with Lie
bracket defined by [x ⊗ ω, y ⊗ η] = (−1)|y|·|ω|[x, y] ⊗ (ω ∧ η) for x, y ∈ a and
ω, η ∈ �. If h : L → a⊗ � is a morphism in DGLAk , we write h(a) : L → a for the
composition of h with the evaluation map eva : a ⊗ � → a ⊗ k ∼= a at t = a, which
is also a morphism in DGLAk for any a ∈ A1

k .

Lemma 2.1 If L is a cofibrant DG Lie algebra, then two morphisms f, g : L −→ a
are homotopic in DGLAk iff there is a morphism h : L −→ a ⊗ � in DGLAk such that
h(0) = f and h(1) = g.

Proof First, note that a ⊗ � is a good path object in DGLAk for any DG Lie algebra

a, with path diagram being a � a ⊗ �
(ev0, ev1)�� a × a , where the first arrow

a → a ⊗ �, x �→ x ⊗ 1 , is a weak equivalence, because � is an acyclic DG
algebra, and the second arrow is a fibration in DGLAk , because each evaluation map
eva is surjective. Thus, by definition, the existence of h implies that the morphism
f is right homotopic to g, and therefore homotopic, since the domain is cofibrant.
Conversely, assume that f is homotopic to g in DGLAk . Then, by [14, Lemma 4.15],

there is a very good path object a ⊂ i� aI (p1, p2)�� a × a , with i : a ∼
↪→ aI being an

acyclic cofibration, and there is a (right) homotopy h′ : L → aI such that p0 h′ = f
and p1 h′ = g. Since a ⊗ � is a good path object, by a lifting property for acyclic
cofibrations, there is a morphism h′′ : aI → a ⊗ � in DGLAk such that the following
diagram commutes:

a � a ⊗ �

aI

i �
∩

(p0, p1)
�

h′′

.........
.........

.........
......�

a × a

(ev0, ev1)��

Letting h := h′′ ◦ h′ : L → a ⊗ �, we get the required homotopy from f to g
passing through a ⊗ �. ��
Proposition 2.1 The functors φ(p) and φ have (total) left derived functors Lφ(p) and
Lφ : Ho(DGLAk) → D(k) .

Proof Observe that, for any commutative DG algebra B, there are natural morphisms
of complexes

2 These functors do not have right adjoints.
3 This should be compared to a well-known description of homotopies in the category of associative DG
algebras (see, e.g., [4, Proposition B.2]).
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φ(p)(a ⊗ B) −→ φ(p)(a) ⊗ B, φ(a ⊗ B) −→ φ(a) ⊗ B

induced by the canonical map of universal enveloping algebras U(a⊗ B) → Ua⊗ B.
If L is a cofibrant DG Lie algebra and f, g : L −→ a are homotopic, with h : L →
a ⊗ � being a homotopy from f to g provided by Lemma 2.1, then we have the map
H : φ(L) −→ φ(a) ⊗ � given by the composition

φ(L)
φ(h)−−→ φ(a ⊗ �) → φ(a) ⊗ �.

A straightforward verification shows that H(0) = φ( f ) and H(1) = φ(g). Thus, if
f, g : L −→ a are homotopic and L is cofibrant, then φ( f ) and φ(g) are homotopic
as morphisms of complexes in Comk .

Now, let f : L ∼→ L′ be a weak equivalence between two cofibrant objects in
DGLAk . By (an abstract version of) Whitehead’s Theorem (see [14, Lemma 4.24]),
there exists a map g : L′ −→ L, such that f g and g f are homotopic to the iden-
tities of L′ and L, respectively. It follows that φ( f g) and φ(g f ) are homotopic
to the identities of φ(L′) and φ(L), and therefore φ( f ) is a quasi-isomorphism.
Hence the functor φ takes weak equivalences between cofibrant objects to weak
equivalences. A similar argument shows that the functors φ(p) take weak equiv-
alences between cofibrant objects to weak equivalences. The existence of Lφ

and Lφ(p) follows now from a standard result in abstract homotopy theory (see
[14, Proposition 9.3]). ��

Now, with Proposition 2.1, we may define

HH(p)• (a) := H•[Lφ(p)(a)], p ≥ 0,

and state the first result of this section:

Theorem 2.1 For any DG Lie algebraa, there is a functorial direct sum decomposition

HH•(Ua) ∼=
∞⊕

p=0

HH(p)• (a). (2.4)

By the Poincaré–Birkhoff–Witt Theorem (see, e.g., [33], Appendix B, Theo-
rem 2.3), the symmetrization maps (1.6) give a natural isomorphism of right DG
a-modules

⊕∞
p=0 Sym

p(a) ∼= Ua . This isomorphism induces an isomorphism of

functors
⊕∞

p=0 φ(p) ∼= φ , which, in turn, induces an isomorphism of the correspond-
ing derived functors from Ho(DGLAk) to D(k):
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∞⊕

p=0

Lφ(p) ∼= Lφ.

To prove Theorem 2.1 it thus suffices to prove the following proposition.

Proposition 2.2 For any a ∈ DGLAk , there is a natural isomorphism H•[Lφ(a)] ∼=
HH•(Ua).

Proof Let C ∈ DGCCk/k be a cocommutative coalgebra Koszul dual to a ∈ DGLAk .
Assume that C̄ is concentrated in strictly positive homological degrees. Then R :=
�(C)

∼−→ Ua is a cofibrant resolution of Ua in DGAk/k and L := �Comm(C)
∼−→ a is a

cofibrant resolution of a in DGLAk . Since R ∼= UL , we have θ(L, R) ∼= �1R�. Now,
let β(L) denote the map (2.2), with a replaced by L and composed with the natural
projection:

β(L) : �1R� −→ R̄, α ⊗ v �→ [α, v].

Then Lφ(a) ∼= Cone[β(L)] in the derived category D(k). Hence, Proposition 2.2 is
a consequence of the following more general assertion: if R

∼−→ A be a semi-free
resolution of A in DGAk/k , then

HH•(A) ∼= H•(Cone[β(R)]).

To prove this assertion, we will use the approach of [4, Section 5], which, in turn,
is based on Quillen’s results [34]. First, we notice that R is isomorphic to the tensor
algebra T V of a graded vector spaceV ; hence, there is an isomorphismof R-bimodules
I : R ⊗ V ⊗ R −→ �1R given by (see [34, Example 3.10] or [11, Section 2.3])

(v1, . . . , vi−1) ⊗ vi ⊗ (vi+1, . . . , vn) �→ (v1, . . . vi−1, vi ) ⊗ (vi+1, . . . , vn)

− (v1, . . . , vi−1) ⊗ (vi , vi+1, . . . , vn).

The inverse map I −1 induces an isomorphism of graded vector spaces

�1R�
∼= R ⊗ V . (2.5)

Under (2.5), the map ∂̄ : R̄ −→ �1R� becomes4

∂̄(v1, . . . , vm) =
m∑

i=1

(−1)(|v1|+···+|vi |)(|vi+1|+···+|vm |)(vi+1, . . . , vm, v1, . . . , vi−1) ⊗ vi .

(2.6)

4 As explained in [5, Appendix A], this map may be called the cyclic de Rham differential. Its kernel is
[R̄, R̄] (see loc. cit.).
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Now, consider the first quadrant bicomplex

X+(R) :=
[
0 ←− R̄

β←− �1R�
∂̄←− R̄

β←− . . .

]
, (2.7)

which is a truncation of Quillen’s periodic X -complex of R (cf. [4, (5.21)]). The sub-
bicomplex of X+(R) obtained by replacing the first (nonzero) column of (2.7) by
Im(β) has exact rows, hence its total complex is acyclic. It follows that the quotient

map Tot [X+(R)] ∼
� R� defined by the canonical projection from the first column is

a quasi-isomorphism; thus,

H•
[
Tot X+(R)

] ∼= HC•(A).

By the above identifications, the total complex Tot X+
2 (R) of the sub-bicomplex

X+
2 (R) of X+(R) comprising of the first two columns is precisely Cone[β(R)] .

On the other hand, by [4, (5.25)]),

H•
[
Tot X+

2 (R)
] ∼= HH•(A). (2.8)

This proves the desired proposition. ��

2.2 Hodge decomposition of the Connes periodicity sequence

One of the fundamental properties of cyclic homology is the Connes periodicity exact
sequence (cf. [28, 2.2.13]).

. . .
S� HCn−1(A)

B� HHn(A)
I� HCn(A)

S� HCn−2(A) � . . .. (2.9)

This sequence involves two important operations on cyclic homology: the period-
icity operator S and the Connes differential B.

Theorem 2.2 For any a ∈ DGLAk , the Connes periodicity sequence of Ua decom-
poses into a direct sum of Hodge components: the summand of Hodge degree p is
given by the long exact sequence

. . .
S� HC(p+1)

n−1 (a)
B� HH(p)

n (a)
I� HC(p)

n (a)
S� HC(p+1)

n−2 (a) � . . ., (2.10)

where the map I is induced on homology by the natural transformation I :
Lφ(p)(a) −→ Lλ(p)(a).

In the proof ofTheorem2.2,wewill use the notation introduced in (the beginning of)
the proof of Proposition 2.2. Note that R := �(C) is freely generated by V := C̄[−1]
as a graded k-algebra, and it can be identified with the universal enveloping algebra
of the cofibrant DG Lie algebra L := �Comm(C). For notational brevity, we let R(p)

denote the image of Sym p(L) in R = UL under the symmetrization map (1.6). Under
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the isomorphism (2.5), the direct summand θ(p)(L) of �1R� can then be identified
with R(p) ⊗ V .

Lemma 2.2 For any p ≥ 1, ∂̄ R(p) ⊆ θ(p−1)(L) and β[θ(p)(L)] ⊆ R(p).

Proof The inclusion ∂̄ R(p) ⊆ θ(p−1)(L) follows immediately fromLemma6.2 proved
in the “Appendix”. The inclusion β[θ(p)(L)] ⊆ R(p) is a consequence of V ⊆ L and
[Sym p(L),L] ⊆ Sym p(L) in UL (where we think of the symmetric powers of L as
subcomplexes of UL via the symmetrization map). ��

We now proceed with

Proof of Theorem 2.2 Let X+(R) (resp., X+
2 (R)) be as in (2.7) (resp., (2.8)). Recall

from [4, Section 5] that there is an exact sequence of bicomplexes

0 −→ X+
2 (R) −→ X+(R) −→ X+(R)[2, 0] −→ 0. (2.11)

At the level of total complexes, this gives the exact sequence

0 � Tot X+
2 (R)

I� Tot X+(R)
S� Tot X+(R)[2] � 0, (2.12)

which induces the Connes periodicity sequence on homologies. As an immediate
consequence of Lemma 2.2, we get a direct sum decomposition of bicomplexes

X+(R) =
∞⊕

p=0

X+,(p)(a),

where

X+,(p)(a) := [0 � R(p) �β θ(p)(L) �̄∂ R(p+1) �β θ(p+1)(L) �̄∂ R(p+2) �β . . .].

In particular, X+
2 (R) = ⊕∞

p=0 X+,(p)
2 (a), where X+,(p)

2 (a) is the sub-bicomplex of

X+,(p)(a) comprising its first two columns. Note that

Tot X+,(p)
2 (a) ∼= Lφ(p)(a)

in D(k), whence H•[Tot X+,(p)
2 (a)] ∼= HH(p)• (a). Further, since the composite map

Tot X+(R) � R� is a quasi-isomorphism, Tot X+,(p)(a) is quasi-isomorphic to

λ(p)(L). It follows that H•[Tot X+,(p)(a)] is isomorphic to HC(p)• (a).
In addition, the exact sequence (2.11) decomposes as a direct sum of Hodge com-

ponents for p ≥ 0, with the p-th Hodge component given by

0 −→ X+,(p)
2 (a) −→ X+,(p)(a) −→ X+,(p+1)(a)[2, 0] −→ 0. (2.13)
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At the level of total complexes, this gives a Hodge decomposition of the exact
sequence (2.12), with the summand in Hodge degree p being

0 � Tot X+,(p)
2 (a)

I� Tot X+,(p)(a)
S� Tot X+,(p+1)(a)[2] � 0. (2.14)

The long exact sequence onhomologies corresponding to (2.14) is (2.10). Finally, since
the projection Tot X+,(p)(a) � λ(p)(L) is a quasi-isomorphism, the natural transfor-
mation I : Lφ(p)(a) −→ Lλ(p)(a) is represented by the inclusion of complexes I
in (2.14). This proves the desired theorem. ��

When p = 0, the column in degree 0 of X+,(p)
2 (a), namely R(p) vanishes while

the column of degree 1 is isomorphic to V = C̄[−1]. Thus, X+,(0)
2 (a) ∼= C̄ , whence

HH(0)• (a) ∼= H(a; k), except in degree 0 where it vanishes. Since HC(0)(a) vanishes
and since HC(1)• (a) ∼= H•+1(a; k), the long exact sequence (2.10) for p = 0 becomes:

. . . � Hn(a; k)
Id� Hn(a; k) � 0 � Hn−1(a; k)

Id� . . .,

with the B map being Id and the S and I maps vanishing.

2.3 Comparison to the Getzler–Kapranov Lie cyclic homology

We recall that for any cyclic operad P and any (DG) P-algebra A, Getzler and Kapra-
nov introduced the (operadic) P-cyclic homology HA•(P, A) as the homology of the
left derived functor of the universal invariant bilinear form on A (see [20, Section 4.7,
Section 5]). In addition, they introduced the homologies HB•(P, A) and HC•(P, A)

that form the long exact sequence (see [20, Section 5.8])

. . . → HAn(P, A) → HBn(P, A) → HCn(P, A) → HAn−1(P, A) → . . . (2.15)

which we call the Connes periodicity sequence for (operadic) P-cyclic homology.
It was shown in [20, Section 6.10] that

HBn−1(Lie, a) ∼= Hn(a; a), HCn−1(Lie; a) ∼= Hn+1(a; k) .

Thus,HCn−1(Lie; a) ∼= HC(1)
n (a). Recall from [20, Section5] thatHAn−1(Lie, a) ∼=

HC(2)
n−1(a). Our final result in this section is:

Theorem 2.3 For p = 1, the Hodge component (2.10) of the Connes periodicity
sequence coincides with the Connes periodicity sequence for (operadic) Lie cyclic
homology (see [20, Section 6.10]).

. . . → HAn−1(Lie, a) → HBn−1(Lie, a) → HCn−1(Lie, a)

→ HAn−2(Lie, a) → . . . (2.16)

Before proving Theorem 2.3, we develop some technical tools.
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2.3.1 Cyclic complex of a cocommutative coalgebra

Let C ∈ DGCCk/k be a cocommutative DG coalgebra Koszul dual to the DG Lie
algebra a. Let CC(C) denote the (reduced) cyclic complex of C , which is defined by
formally reversing the arrows in the classical Connes’ construction. As observed in
[34], there is a natural identification of complexes �(C)� ∼= CC(C)[−1] , which gives
an isomorphism HC•(Ua) ∼= HC•+1(C). Under this isomorphism, HC(p)• (a) is iden-

tified with the Hodge summand HC
(p−1)
•+1 (C) coming from the Hodge decomposition

of HC•(C) which exists due to cocommutativity of C (see [2, Proposition 7.4]).
In particular, for the rest of this section, letC be the Chevalley–Eilenberg coalgebra

C(a; k). The Hodge decomposition of HC•(C) has an explicit description in terms of
the de Rham coalgebra of C (see [3, Section 2]). This description is dual to that
of the Hodge decomposition of the cyclic homology of a smooth commutative (in
fact, symmetric) (DG) algebra A in terms of the de Rham complex of A. Explicitly,
let DR•(C) denote the mixed de Rham complex of C (see [3, Section 2] for the
definition). The negative cyclic complex CC−[DR•(C)] has a Hodge decomposition
due to cocommutativity ofC . LetCC−,(p)[DR•(C)] denote the componentwithHodge
weight p. Then (see [3], Proposition 2.2 and Theorem 2.4)

Proposition 2.3 There are natural isomorphisms

HC
(p)

• (C) ∼= H•(CC−,(p)[DR•(C)]) ∼= H•+p

(
ker

[
d : �

p
C −→ �

p−1
C

])
,

where d : �
p
C −→ �

p−1
C is the de Rham differential.

It is easy to see that�p
C [−p] and C(a;Sym p(a)) are both isomorphic to Sym p(a)⊗

∧a as graded vector spaces. Thus, DR•(C) is isomorphic to C(a;Sym(a)), which is
in turn isomorphic to the (reduced) de Rham algebra �•

Sym(a) as graded vector spaces.
We complete this picture with the following

Lemma 2.3 Under the above isomorphism, the de Rham differential on DR•(C) is
identified with the de Rham differential on �•

Sym(a)/k and the differential on �
p
C [−p]

induced by the differential on C is identified with the Chevalley–Eilenberg differential
on C(a;Sym p(a)).

Proof This lemma is formally dual to the following assertion: let A := C•(a; k) be the
Chevalley–Eilenberg cochain complex of a (which is isomorphic as a graded algebra
to Sym(a∗[1]). Then, �

p
A[−p] ∼= C•(a;Sym p(a∗)). For p = 1, this assertion fol-

lows from a direct computation (see [28, Section 5.4] for instance). For higher p, one
notices that the natural map Sym p

A(�1
A) −→ C•(a;Sym p(a∗)) is compatible with dif-

ferentials (it induces the p-fold cup product) and is an isomorphism of graded k-vector
spaces. ��

Thus the de Rham differential d on �Sym(a)/k (anti)commutes with the Chevalley–
Eilenberg differential δ on C(a;Sym(a)). This makes (�•

Sym(a)/k, δ, d) a mixed
complex (since d has degree 1 while δ has degree −1) isomorphic to DR•(C). As
a consequence of Proposition 2.3 and [2, Proposition 7.4],
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Corollary 2.1 There is a natural isomorphism:

HC(p)• (a) ∼= H•+1

[
ker(d : C(a;Sym p−1(a)) −→ C(a;Sym p−2(a))[−1])

]
.

In particular, as shown in [20, Section 6.10],

HC(2)
n (a) ∼= Hn+1 [ker(d : C(a; a) −→ C(a; k)[−1])] .

As a consequence of (1.2) and Corollary 2.1, we now obtain a different proof of the
following result originally due to Kassel [25] (see also [28, Theorem 3.3.7]).

Corollary 2.2 HC•(Ua) is isomorphic to the cyclic homology of the mixed complex
(�•

Sym(a), δ, d).

Proof We have natural isomorphisms

HC•(�•
Sym(a), δ, d)

∼= H•
[
�•

Sym(a)/d(�•
Sym(a)), δ

]

∼=
∞⊕

p=1

H•
[
coker(d : C(a;Sym p+1(a)) −→ C(a;Sym p(a))[−1])

]

∼=
∞⊕

p=1

H•+1

[
ker(d : C(a;Sym p−1(a)) −→ C(a;Sym p−2(a))[−1])

]

∼=
∞⊕

p=1

HC(p)• (a) (by Corollary 2.1)

∼= HC•(Ua) (by (1.2)).

where the first isomorphism is due to the fact that �•
Sym(a) is acyclic with respect

to the de Rham differential d and the third isomorphism is induced by the de Rham
differential. ��

2.3.2 Proof of Theorem 2.3

Theorem 2.3 follows from the results of [20, Section 6.10] and the following propo-
sition.

Proposition 2.4 Let d(p) : C(a;Sym p(a)) −→ C(a;Sym p−1(a))[−1] be the de Rham
differential. Let I denote the map d(p) thought of as a map from C(a;Sym p(a)) to
Im(d(p)). Then, for all p ≥ 1, the homology long exact sequence arising from the
short exact sequence of complexes

0 � ker(d(p))
B� C(a;Sym p(a))

I� ker(d(p−1))[−1] � 0
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coincides with the exact sequence (2.10). In particular, we have

HH(p)• (a) ∼= H•(a;Sym p(a)), ∀ p ≥ 1. (2.17)

Proof The bicomplex X+(R) for R = �(C) is formally dual to Tsygan’s double com-
plex (in columns of strictly negative degree) for the augmentation ideal Ā of a smooth
commutative DGA A ∈ DGCAk/k (with the latter given a bidegree shift of [−1, 1].
By [28, 1.4.5 and 2.2.16], the total complex of this bicomplex is canonically iso-
morphic to the total complex of Connes’ reduced (b, B)-bicomplex B−(A)red[−1, 0]
for the negative cyclic homology A. It is easy to see that this isomorphism is com-
patible with the corresponding S-I short exact sequence of complexes for negative
cyclic homology. Dually, if C = C(a; k) (which is a symmetric coalgebra), X+(R) is
canonically isomorphic to Connes’ (b, B)-complex for C with a shift of [1,−1] (the
isomorphism being compatible with the I -S short exact sequence of total complexes.
By the dual to the Hochschild–Kostant–Rosenberg theorem and the fact that the de
Rham differential on �•

C corresponds to the B differential under the dual HKR map,
there is a dual HKR quasi-isomorphism of bicomplexes

BDR(C)[1,−1] −→ B(C)red[1,−1],

where

BDR(C) :=
[

⊕p �
p
C [−p] d←− ⊕p �

p+1
C [−p] d←− . . .

]
.

Note that there is a natural Hodge decomposition BDR(C) ∼= ⊕
p B(p)

DR(C) , where

B(p)
DR(C) :=

[
�

p
C [−p] d←− �

p+1
C [−p] d←− . . .

]
.

Besides being compatible with the I -S short exact sequence of total complexes,
the (dual) HKR map is also compatible with Hodge decomposition. The exact
sequence (2.10) is thus induced by the short exact sequence of complexes

0 → �
p
C [−p] I−→ Tot B(p)

DR(C)
S−→ TotB(p+1)

DR (C)[2] → 0.

By Lemma 2.3, �p
C [−p] ∼= C(a;Sym p(a)). Let ϕ(p) : Tot B(p)

DR(C) −→ ker(d(p−1))

[−1] be themap given by d(p) on�
p
C [−p] and vanishing on all other direct summands.

By acyclicity of�•
C with respect to d,ϕ(p) is a quasi-isomorphism. Thus, in the derived

categoryD(k) of complexes of k-vector spaces, there is a commutative diagramwhere
the rows are distinguished triangles and given vertical arrows are isomorphisms.

Tot B(p+1)
DR (C)[1] B� �

p
C [−p] I � TotB(p)

DR(C)
S� Tot B(p+1)

DR (C)[2]

ker(d(p))
B� �

p
C [−p]
Id �

I� ker(d(p−1))[−1]
ϕ(p) �

� ker(d(p))[1]
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It follows that there is an arrow in D(k) completing the above diagram into an
isomorphism of distinguished triangles. This proves the desired proposition. ��

3 Derived Poisson structures

In this section,we studyderivedPoisson structures on (the universal enveloping algebra
of) a DG Lie algebra a. We focus on the case when the derived Poisson structure on
Ua arises from a cyclic pairing on a cocommutative DG coalgebra C that is Koszul
dual to a. Our main observation is that this derived Poisson structure is compatible
with Lie Hodge decomposition of Ua.

3.1 Derived Poisson algebras

We begin by reviewing the notion of a derived Poisson algebra introduced in [1].
This notion is a higher homological extension of the notion of an H0-Poisson algebra
proposed by Crawley-Boevey [12].

3.1.1 Definitions

Let A be an (augmented) DG algebra. The space Der(A) of graded k-linear derivations
of A is naturally a DGLie algebra with respect to the commutator bracket. Let Der(A)�

denote the subcomplex of Der(A) comprising derivations with image in k +[A, A] ⊆
A . It is easy to see that Der(A)� is a DG Lie ideal of Der(A), so that Der(A)� :=
Der(A)/Der(A)� is a DG Lie algebra. The natural action of Der(A) on A induces a
Lie algebra action of Der(A)� on the quotient space A� := A/(k + [A, A]). We write
� : Der(A)� → End(A�) for the corresponding DG Lie algebra homomorphism.

Now, following [1], we define a Poisson structure on A to be a DG Lie algebra
structure on A� such that the adjoint representation ad : A� → End(A�) factors
through � : i. e., there is a morphism of DG Lie algebras α : A� −→ Der(A)� such
that ad = �◦α . It is easy to see that if A is a commutative DG algebra, then a Poisson
structure on A is the same thing as a (graded) Poisson bracket on A. On the other hand,
if A is an ordinary k-algebra (viewed as a DG algebra), then a Poisson structure on A
is precisely an H0-Poisson structure in the sense of [12].

Let A and B be two Poisson DG algebras, i.e. objects of DGAk/k equipped with
Poisson structures. A morphism f : A −→ B of Poisson algebras is then a morphism
f : A → B in DGAk/k such that f� : A� −→ B� is a morphism of DG Lie algebras.
With this notion of morphisms, the Poisson DG algebras form a category which we
denoteDGPAk . Note thatDGPAk comeswith two natural functors: the forgetful functor
U : DGPAk → DGAk/k and the cyclic functor ( – )� : DGPAk → DGLAk . We say that
a morphism f is a weak equivalence in DGPAk if U f is a weak equivalence in DGAk/k

and f� is a weak equivalence in DGLAk ; in other words, a weak equivalence in DGPAk

is a quasi-isomorphism of DG algebras, f : A → B , such that the induced map
f� : A� −→ B� is a quasi-isomorphism of DG Lie algebras.
Although we do not know at the moment whether the category DGPAk carries a

Quillen model structure (with weak equivalences specified above), it has the weaker
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property of being a homotopical category in the sense of Dwyer–Hirschhorn–Kan–
Smith [15]. This still allows one to define a well-behaved homotopy category of
Poisson algebras and consider derived functors on DGPAk .

3.1.2 Homotopical categories

Recall (cf. [15]) that a homotopical category is a category C equipped with a class of
morphismsW (called weak equivalences) that contains all identities of C and satisfies
the following 2-of-6 property: for every composable triple of morphisms f, g, h in
C, if g f and hg are in W, then so are f, g, h and hg f . The 2-of-6 property formally
implies, but is stronger than, the usual 2-of-3 property: for every composable pair
of morphisms f, g in C, if any two of f , g and g f are in W , so is the third. The
class of weak equivalences thus forms a subcategory which contains all objects and
all isomorphisms of C. The isomorphisms in any category satisfy the 2-of-6 property:
indeed, if f, g, h is a composable triple such that g f and hg are isomorphisms, then
g has the right inverse f (g f )−1, which must also be a left inverse, since g is monic
(because hg is an isomorphism); hence g and therefore also f , h and hg f are iso-
morphisms. Thus, any category can be viewed as a homotopical category by taking
the weak equivalences to be the isomorphisms.5 Furthermore, any model category
is a homotopical category. This follows from the important property of model cate-
gories (see [32, Proposition 5.1]) that the class W of weak equivalences is saturated
in C : i.e. it comprises all the arrows of C that become isomorphisms in the localized
category C[W−1] . Since the isomorphisms in C[W−1] satisfy the 2-of-6 property, it
follows immediately that the weak equivalences in a saturated category satisfy the 2-
of-6 property. The category C[W−1] is called the homotopy category of C and usually
denoted Ho(C). It is a domain (and target) of homotopical functors and other homo-
topical structures that constitute the homotopy theory associated to a model category
C. Now, a key observation of [15] is that a well-behaved homotopy category, including
a meaningful notion of derived functors, can be defined for any homotopical category
in which the class of weak equivalences is saturated. Such categories are called in [15]
saturated homotopical categories.

After these preliminaries, we can state our proposition.

Proposition 3.1 DGPAk is a saturated homotopical category.

Proof It suffices to prove that the class of weak equivalences in DGPAk is saturated.
Let γ : DGPAk → Ho(DGPAk) denote the (formal) localization of DGPAk at the class
of weak equivalences (similarly, abusing notation, we will write γ for the localizations
ofDGAk/k andDGLAk .) Since both the forgetful functorU : DGPAk → DGAk/k and the
cyclic functor ( – )� : DGPAk → DGLAk → preserve weak equivalences, by the uni-
versal property of localization, they factor through γ , inducing γU : Ho(DGPAk) →
Ho(DGAk/k) and γ ( – )� : Ho(DGPAk) → Ho(DGLAk) . Now, if f is a morphism in
DGPAk such that γ f is an isomorphism in Ho(DGPAk), then γ (U f ) is an isomorphism
in Ho(DGAk/k) and γ ( f�) is an isomorphism in Ho(DGLAk). Since both DGAk/k and

5 In [15], these are called minimal homotopical categories.
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DGLAk are model categories, the classes of their weak equivalences are saturated. It
follows that U f and f� are weak equivalences in DGAk/k and DGLAk , respectively.
Then, by definition, f is a weak equivalence in DGPAk , so that the class of weak
equivalences DGPAk is saturated. ��

3.1.3 The homotopy category of Poisson algebras

If C is a model category, there are two ways to define a homotopy category of C: first,
one can simply put Ho(C) := C[W−1] , or alternatively, one can consider the full
subcategory Cc of cofibrant/fibrant objects in C and then define Ho(Cc) := Cc/∼ to be
the quotient category of Cc modulo an appropriate homotopy equivalence relation.6

By (an abstract version of) Whitehead’s Theorem, the two definitions are equivalent,
the equivalence Ho(Cc)

∼→ Ho(C) being induced by the natural functor Cc ↪→ C →
Ho(C). Each definition has its advantages: the first one is more natural (it gives a
characterization of Ho(C) in terms of a universal property and shows that Ho(C)

depends only on the class of weak equivalences in C); the second definition is more
concrete and accessible for computations (it implies, in particular, that Ho(C) is a
locally small category if so is C.)

Now, for the homotopical category DGPAk , we can also define a homotopy category
in two ways. First, we can simply put

Ho(DGPAk) := DGPAk

[
W−1

]
,

where W is the class of weak equivalences specified in Sect. 3.1.1. Proposition 3.1
then ensures that Ho(DGPAk) has properties similar to those of the homotopy category
of a model category (see [15, Sect. 33.8]).

Alternatively, following [1], we can mimic the definition of the classical homotopy
category of a model category and define7

Ho(DGPAck) := DGPAc
k/∼ (3.1)

The objects in this quotient category are the homotopy classes of Poisson algebras
A whose underlying DG algebrasU (A) are cofibrant as objects in DGAk/k . The equiv-
alence relation ∼ is based on the notion of P-homotopy (‘polynomial homotopy’)
for Poisson algebras introduced in [1]. We recall that two morphisms f, g : A −→ B
in DGPAk are called P-homotopic if there is a morphism h : A −→ B ⊗ � such that
h(0) = f and h(1) = g, where � = �(A1

k) is the de Rham algebra of the affine
line and B ⊗ � is given the structure of a Poisson DG algebra via the extension of
scalars from B (cf. [1], Sect. 3.1). It is easy to check that the P-homotopy defines an
equivalence relation on HomDGPA(A, B) for any objects A and B in DGPAk .

Now, as in the case of model categories, we have

6 The category Ho(Cc) is often called the classical homotopy category of C.
7 This category was denoted Ho∗(NCPoissk ) in [1] and simply referred to as the homotopy category of
Poisson algebras.
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Proposition 3.2 There is a natural functor Ho(DGPAc
k) → Ho(DGPAk) .

Proof Recall that, for B ∈ DGPAk , a Poisson DG algebra structure on B ⊗� is given
by extension of scalars, using the natural isomorphism (B ⊗ �)� ∼= B� ⊗ � (cf. [1,
Section 3.1.1]). Then, the inclusion i : B −→ B ⊗� is a weak equivalence of Poisson
algebras: indeed, Ui is a weak equivalence of DG algebras, since the de Rham algebra
� is acyclic, and i� is a weak equivalence of DG Lie algebras, since i� can be identified
with the inclusion B� ↪→ B� ⊗ �. Thus, if f, g : A −→ B are P-homotopic with a
homotopy h : A −→ B ⊗ �, then f = g = i−1 ◦ h in Ho(DGPAk). This proves the
desired proposition. ��
Definition By a derived Poisson algebra we mean a cofibrant associative DG algebra
A equipped with a Poisson structure (in the sense of Defintion 3.1.1), which is viewed
up to weak equivalence, i.e. as an object in Ho(DGPAk).

The above definition differs from that of [1], where the derived Poisson algebras
were simply defined to be the objects of Ho(DGPAck). Proposition 3.2 shows, however,
that any derived Poisson algebra in the sense of [1] gives naturally a derived Poisson
algebra in our current sense. The point is that all results of [1] established with the
use of explicit P-homotopies can be strengthened and reproved in a more natural way
with a weaker notion of equivalence. For example, we have

Proposition 3.3 The cyclic homology HC•(A) of any derived Poisson algebra A car-
ries a natural structure of a graded Lie algebra.

Proof By definition, the functor ( – )� : DGPAc
k ↪→ DGPAk → DGLAk preserves

weak equivalences, and hence induces

( – )� : Ho(DGPAk)
c → Ho(DGLAk) , (3.2)

whereHo(DGPAk)
c denotes the full subcategory of the homotopy categoryHo(DGPAk)

whose objects are cofibrant DG algebras. Now, the image of A under (3.2) is a DG
Lie algebra A� whose underlying complex computes the (reduced) cyclic homology
of A. This is a consequence of [4], Theorem 3.1, (which is essentially due to Feigin
and Tsygan) that states that the functor ( – )� has a well-defined derived functor L( – )�
on the category of DG algebras whose homology agrees with cyclic homology. On
cofibrant DG algebras, the values of ( – )� and L( – )� are naturally isomorphic, hence
H•(A�) ∼= HC•(A) for any cofibrant A. On the other hand, since A� is a DG Lie alge-
bra, H•(A�) carries a graded Lie algebra structure. Identifying H•(A�) with HC•(A)

for a cofibrant A, we get a graded Lie algebra structure on HC•(A) claimed by the
proposition. ��

Another important result of [1] that holds for the derived Poisson algebras in
Ho(DGPAk) and that motivates our study of these objects is the following

Theorem 3.1 (cf. [1], Theorem 2) If A is a derived Poisson DG algebra, then, for any
finite-dimensional vector space V , there is a unique graded Poisson bracket on the
representation homology H•(A, V )GL(V ) of A in V , such that the derived character
map TrV (A)• : HC•(A) → H•(A, V )GL(V ) is a Lie algebra homomorphism.
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We will not reprove Theorem 3.1 here; instead, in Sect. 5, we will give a general-
ization of this result to representation homology of Lie algebras.

3.2 Cyclic pairings

We now describe our basic construction of derived Poisson structures associated with
cyclic coalgebras. Recall (cf. [20]) that a graded associative k-algebra is called n-cyclic
if it is equipped with a symmetric bilinear pairing 〈–, –〉 : A × A −→ k of degree n
such that

〈a, bc〉 = ±〈ca, b〉, ∀ a, b, c ∈ A

the signs being determined by the Koszul sign rule. Dually, a graded coalgebra C is
called n-cyclic if it is equipped with a symmetric bilinear pairing 〈–, –〉 : C ×C −→ k
of degree n such that

〈v′, w〉v′′ = ±〈v,w′′〉w′, ∀ v,w ∈ C,

where v′ and v′′ are the components of the coproduct of v written in the Sweedler
notation. A DG coalgebra C is n-cyclic if it is n-cyclic as a graded coalgebra and

〈du, v〉 ± 〈u, dv〉 = 0,

for all homogeneous u, v ∈ C , i.e. if 〈–, –〉 : C[n] ⊗ C[n] −→ k[n] is a map of
complexes. By convention, we say that C ∈ DGCk/k is n-cyclic if C̄ is n-cyclic as a
non-counital DG coalgebra.

Assume thatC ∈ DGCk/k is equippedwith a cyclic pairing of degree n and let R :=
�(C) denote the (associative) cobar construction of C . Recall that R ∼= Tk(C̄[−1])
as a graded k-algebra. For v1, . . . , vn ∈ C̄[−1], let (v1, . . . , vn) denote the element
v1 ⊗ . . . ⊗ vn of R. By [1, Theorem 15], the cyclic pairing on C of degree n induces
a double Poisson bracket of degree n + 2 (in the sense of [35])

{{–, –}} : R̄ ⊗ R̄ −→ R ⊗ R

given by the formula

{{(v1, . . . , vn), (w1, . . . , wm)}}
=

∑

i=1,...,n
j=1,...,m

±〈vi , w j 〉(w1, . . . , w j−1, vi+1, . . . , vn) ⊗ (v1, . . . , vi−1, w j+1, . . . , wm).

(3.3)

The above double bracket can be extended to R⊗R by setting {{r, 1}} = {{1, r}} = 0.
Let {–, –} be the bracket associated to (3.3):

{–, –} := μ ◦ {{–, –}} : R ⊗ R −→ R, (3.4)
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where μ is the multiplication map on R. Let � : R −→ R� be the canonical projection
and let {–, –} : � ◦ {–, –} : R ⊗ R −→ R�. We recall that the bimodule R ⊗ R (with
outer R-bimodule structure) has a double bracket (in the sense of [11, Defn. 3.5])
given by the formula

{{–, –}} : R × (R ⊗ R) −→ R ⊗ (R ⊗ R) ⊕ (R ⊗ R) ⊗ R,

{{r, p ⊗ q}} := {{r, p}} ⊗ q ⊕ (−1)|p|(|r |+n) p ⊗ {{r, q}}.

This double bracket restricts to a double bracket on the sub-bimodule�1R of R⊗ R
( [11, Corollary 5.2]). Let {–, –} : R ⊗ �1R −→ �1 be the map μ ◦ {{–, –}}, where
μ is the bimodule action map and let {–, –} : R ⊗ �1R −→ �1R� denote the map
� ◦ {–, –}.

The bracket {–, –} : R ⊗ R −→ R� descends to a DG (n + 2)-Poisson structure on
R. In particular, it descends to a (DG) Lie bracket {–, –}� : R� ⊗ R� −→ R� on R� of
degree n + 2. This last bracket can be expressed in terms of cyclic derivatives, which,
in turn, can be expressed in terms of the coproduct on R (viewed as the universal
enveloping algebra of a free Lie algebra). To be precise, recall from [5, Appendix A]
that the cyclic derivative ∂̄ : R̄ −→ R ⊗ V [see (2.6)] factors through [R̄, R̄] , where
V := C̄[−1]. It follows from (3.3) that

{ᾱ, β̄}� = 〈∂̄(α), ∂̄(β)〉, ∀α, β ∈ R̄,

where 〈–, –〉 : (R ⊗ V )⊗2 −→ R denotes the composite map (R ⊗ V )⊗2 ∼−→ R⊗2 ⊗
V ⊗2 μ⊗〈–,–〉−−−−−−→ R , and the bar over 〈–, –〉 denotes the image in R� under the canonical
projection.

The restriction of the bracket (3.4) to R̄ induces a degree n + 2 DG Lie module
structure over R� on R̄ and the bracket {–, –} : R ⊗ �1R −→ �1R� induces a degree
n + 2 DG Lie module structure over R� on �1R� (see [11, Proposition 3.11]). On the
homology level, we obtain (see [11, Theorem 1.1 and Theorem 1.2])

Theorem 3.2 Let A ∈ DGAk/k be an augmented associative algebra Koszul dual to
C ∈ DGCk/k . Assume that C is n-cyclic. Then,

(i) HC•(A) has the structure of a graded Lie algebra (with Lie bracket of degree
n + 2).

(i i) HH•(A) has a graded Lie module structure over HC•(A) of degree n + 2.
(i i i) The maps S, B and I in the Connes periodicity sequence (2.9) are homomor-

phisms of degree n + 2 graded Lie modules over HC•(A).

The Lie bracket of degree n + 2 on HC•(A) that is induced by a (n + 2)-Poisson
structure on R� as above is an example of a derived (n + 2)-Poisson structure on A.
Convention. Since we work with algebras that are Koszul dual to n-cyclic coalgebras,
all Lie algebras that we work with have Lie bracket of degree n + 2. Similarly, all Lie
modules are degree n +2 Lie modules. We therefore, drop the prefix “degree n +2” in
the sections that follow. Following this convention, we shall refer to (derived) (n +2)-
Poisson structures as (derived) Poisson structures.
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3.3 The Hodge filtration

Consider the filtration on (the graded vector space) HC•(Ua) given by

FpHC•(Ua) :=
⊕

r≤p+2

HC(r)• (a). (3.5)

Let a ∈ DGLAk be Koszul dual to C ∈ DGCCk/k , where C is n-cyclic. The following
theorem is one of our main results.

Theorem 3.3 The derived Poisson bracket {–, –} on HC•(Ua) respects the filtra-
tion (3.5).

Moreover,
(i) {HC(1)• (a),HC(p)• (a)} ⊆ HC(p−1)• (a) for all p ≥ 1. In particular, {HC(1)• (a),

HC(1)• (a)} = 0.
(i i) {HC(2)• (a),HC(p)• (a)} ⊆ HC(p)• (a) for all p ≥ 1.
In particular, HC(2)• (a) is a Lie subalgebra of HC•(Ua) and HC•(Ua) is a Hodge

weight graded Lie module over HC(2)• (a).

Recall that L := �Comm(C) gives a cofibrant resolution L ∼−→ a of a in DGLAk and
the (associative) cobar construction R := �(C) gives a cofibrant resolution R

∼−→ Ua
of Ua (with R ∼= UL). By Theorem 3.2, the n-cyclic pairing on C induces a derived
Poisson structure on HC•(Ua). The proof of Theorem 3.3 is based on the following
proposition. For notational brevity, let V := C̄[−1].
Proposition 3.4 Let R(p) := Sym p(L) as in Sect. 2.2. Let {–, –} be defined as in (3.4).

(i) {R(1), R(p)} ⊆ R(p−1) for any p ≥ 1. In particular, {R(1), R(1)} = 0.
(i i) {R(2), R(p)} ⊆ R(p) for any p ≥ 1.
(i i i) For p, q > 2, {R(q), R(p)} ⊆ ⊕

r≤p+q−2 R(r).

Proof Let α ∈ R(q) be homogeneous. By [35, Section 2.4], the map {α, –} : R̄ −→ R
is a derivation of degree |α| + n + 2. By Lemma 6.1, it suffices to show that {α, V } ⊆
Symq−1(L). Note that if w ∈ V , then by (3.3),

{(v1, . . . , vn), w} =
n∑

i=1

±〈vi , w〉(vi+1, . . . , vn, v1, . . . , vi−1).

It is easy to see that this coincides with the expression 〈∂̄(v1, . . . , vn), w〉, where
〈–, –〉 : R̄ ⊗ V −→ R denotes the composite map

R̄ ⊗ V
∂̄ ⊗ IdV� (R ⊗ V ) ⊗ V � R ⊗ (V ⊗ V )

IdV ⊗ 〈–, –〉� R.

The unlabelled arrow in the above diagram swaps factors. Now, if α ∈, R(q),
∂̄(α) ∈ Symq−1(L) ⊗ V by Lemma 6.2. Thus, {α, V } ⊆ Symq−1(L) as desired. ��
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Corollary 3.1 Let {–, –}� be the DG Poisson bracket on R� as in Sect. 3.2 above.
Then,

(i) {R(1)
� , R(p)

� }� ⊆ R(p−1)
� for any p ≥ 1. In particular, {R(1)

� , R(1)
� }� = 0.

(i i) {R(2)
� , R(p)

� }� ⊆ R(p)
� for any p ≥ 1.

(i i i) For p, q > 2, {R(q)
� , R(p)

� }� ⊆ ⊕
r≤p+q−2 R(r)

� .

Corollary 3.1 follows immediately from Proposition 3.4. Theorem 3.3 follows
immediately from (1.2) and Corollary 3.1.

3.4 Hodge filtration on Poisson modules

Let a, C, R, V and L be as in Sect. 3.3, with C having a cyclic pairing of degree n.
Recall that by Theorem 3.2, HH•(Ua) is a Lie module over HC•(Ua). In addition
to (3.5), we define the filtration on HH•(Ua)

FpHH•(Ua) :=
⊕

r≤p+2

HH(r)• (a). (3.6)

and let {–, –} : HC•(Ua) × HH•(Ua) −→ HH•(Ua) denote the action map.

Theorem 3.4 HH•(Ua) is a filtered Lie module, with filtration given by (3.6). More-
over, for all p ≥ 0,

(i) {HC(1)• (a),HH(p)• (a)} ⊆ HH(p−1)• (a).
(i i) {HC(2)• (a),HH(p)• (a)} ⊆ HH(p)• (a).
In particular, HH•(Ua) is a Hodge weight graded Lie module over HC(2)• (a).

The restrictions of the maps S, B and I of the Connes periodicity sequence to the
Hodge summand (2.10) give maps of graded vector spaces

S : HC(p)• (a) −→ HC(p+1)
•−2 (a) (3.7)

B : HC(p+1)• (a) −→ HH(p)
•+1(a) (3.8)

I : HH(p)• (a) −→ HC(p)• (a). (3.9)

If we equip HC•(Ua) with filtration (3.5) and HH•(Ua) with filtration (3.6), the
maps S, B and I become filtered maps; more precisely, we have:

S : F•HC•(Ua) −→ F•+1HC•−2(Ua) (3.10)

B : F•+1HC•(Ua) −→ F•HH•+1(Ua) (3.11)

I : F•HH•(Ua) −→ F•HC•(Ua). (3.12)

The first statement in the following theorem is a refinement of [11, Theorem 1.2].

Theorem 3.5 With definitions (3.10)–(3.12), the maps S, B and I become filtered Lie
module maps. Moreover, in the Hodge summand (2.10), these maps are module maps
over the Lie algebra HC(2)• (Ua).
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Corollary 3.2 The space HA•(Lie, a) has the structure of a graded Lie algebra, and
HB•(Lie, a) and HC•(Lie, a) are graded Lie modules over HA•(Lie, a). Further,
the maps S, B and I in the Connes periodicity sequence for (operadic) Lie cyclic
homology (see Theorem 2.3) are maps of Lie modules.

Proof Indeed, by definition, HA•(Lie, a) = HC(2)• (a). The remaining statements
follow from Theorem 2.3 and by putting p = 1 in Theorem 3.3, Theorem 3.4 and
Theorem 3.5. ��

3.4.1 Proof of Theorem 3.4

Recall from Sect. 2.2 that�1R�
∼= R ⊗ V and that there is a direct sum decomposition

(of complexes) �1R�
∼= ⊕

p≥0 θ(p)(L). Further recall that the isomorphism �1R�
∼=

R ⊗ V identifies θ(p)(L) with R(p) ⊗ V , where R(p) := Sym p(L). Recall from
Sect. 3.2 that there is a bracket {–, –} : R̄ × �1R� −→ �1R� inducing the structure of
a DG Lie module over R� on �1R�.

Proposition 3.5 For any p ≥ 0, the following inclusions hold:
(i) {R(1), R(p) ⊗ V } ⊆ R(p−1) ⊗ V . In particular, {R(1), V } = 0.
(i i) {R(2), R(p) ⊗ V } ⊆ R(p) ⊗ V . Thus, �1R� is a Hodge weight graded DG Lie

module over R(2)
� .

(i i i) For any m > 2, {R(m), R(p) ⊗ V } ⊆ ⊕
r≤p+m−2 R(r) ⊗ V .

Proof Let r ∈ R(m), q ∈ R(p) and v ∈ V be homogeneous. By [11, Lemma 5.5],

{r, q⊗v}�1R�
= �◦[{r, q}·v⊗1−{r, q}⊗v+(−1)(|r |+n)|q|(q ·{r, v}⊗1−q⊗{r, v})],

(3.13)
where �1R on the right hand side is realized as a sub-bimodule of R ⊗ R equipped
with the outer bimodule structure and where � : �1R −→ �1R� is the canonical
projection. The first summand � ◦ ({r, q} · v ⊗ 1 − {r, q} ⊗ v) of (3.13) is equal to
{r, q} ⊗ v (after the identification of �1R� with R ⊗ V . The remaining (i.e. second)
summand of (3.13) may be written as � ◦ [q · d{r, v}], where d : R −→ �1R is the
universal derivation.

If m = 1, Proposition 3.4 implies that {r, q} ∈ R(p−1) and that {r, v} ∈ k. Thus,
in this case, the second sumand vanishes while the first summand is in R(p−1) ⊗ V .
This proves (i).

If m = 2, Proposition 3.4 implies that {r, q} ∈ R(p) and that {r, v} ∈ L. Thus,
the first statement of (ii) will follow once we show that for any α ∈ L, � ◦ [q · dα] ∈
R(p)⊗V . Note that if �◦[q ·dα] ∈ R(p)⊗V for all q ∈ R(p) for a given homogeneous
α ∈ L, then for any v ∈ V homogeneous,

� ◦ (q · d[v, α]) = � ◦ (q · d[v · α − (−1)|v||α|α · v])
= � ◦ (q · [dv · α + v · dα − (−1)|v||α|(dα · v + α · dv)])
= � ◦ ((−1)|α|(|q|+|v|)[α · q · dv − (−1)|q||α|q · α · dv]

+ [q · v − (−1)|q||v|v · q] · dα)

= � ◦ ((−1)|α|(|q|+|v|)[α, q] · dv + [q, v] · dα).
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Since [α, q] and [q, v] are in R(p), we have shown that �◦(q ·d[v, α]) is in R(p)⊗V
for all q. Thus, by induction on n, we show that � ◦ (q · d[v, αn]) is in R(p) ⊗ V for
αn = [v1, [v2, . . . [vn−1, vn] . . .]] for homogeneous v1, . . . , vn in V . This proves that
�◦[q ·dα] ∈ R(p)⊗V for all q ∈ R(p) for all α ∈ L as desired. The second statement
in (ii) follows from the first and the fact that the bracket on �1R� descends to an DG

Lie module structure on �1R� over R� (of which R(2)
� is a DG Lie subalgebra).

Finally, for m > 2, the first summand of (3.13), which can be identified with
{r, q} ⊗ v, lies in

⊕
r≤p+m−2 R(r) ⊗ V , by Proposition 3.4. Also note that {r, v} ∈

R(m−1), by Proposition 3.4. Thus, the second summand � ◦ [q · d{r, v}] is of the form
� ◦ [q · dβ], where β ∈ R(m−1). This last expression is a k-linear combination of
expressions of the form � ◦ [q · γ · dα · φ] = ±� ◦ [φ · q · γ · dα], where α ∈ L,
and γ ∈ R(i) and φ ∈ R( j) with i + j = m − 2. Now, for any such expression,
φ · q · γ ∈ ⊕

r≤p+m−2 R(r). That � ◦ [φ · q · γ · dα] lies in ⊕
r≤p+m−2 R(r) ⊗ V now

follows from the computation we made while proving (ii). ��
It follows from Proposition 3.4, Proposition 3.5 and [11, Theorem 5.3] that the

statement of Proposition 3.5 holdsword forwordwith R(p)⊗V replaced byTot X+,(p)
2 .

Theorem 3.4 then follows on homologies.

3.4.2 Proof of Theorem 3.5

Let Fp X+(R) be given by ⊕r≤p+2X+,(r)(a). By Proposition 3.4, Proposition 3.5
and [11, Theorem 5.3], there is an exact sequence of filtered DG Lie modules over R�

0 � F•Tot X+
2 (R)

I� F•Tot X+(R)
S� F•+1Tot X+(R)[2] � 0.

This implies (i) on homologies. Again by Proposition 3.4, Proposition 3.5 and [11,
Theorem 5.3], the short exact sequence of complexes (2.14) is an exact sequence of
DG Lie modules over R(2)

n . This gives (ii).

3.5 Examples

We illustrate the results of this section on several examples.

3.5.1 Abelian Lie algebras

Let a = V be an abelian Lie algebra in homological degree 0. Then, A := Ua =
Sym(V ). The Koszul dual cocommutative coalgebra is C := Symc(V [1]). By [11,
Proposition 9.4],C has (upto scalars) a unique cyclic pairing 〈–, –〉 that is of degree−n,
where n := dimk V . For a basis {v1, . . . , vn} of V , this pairing is uniquely determined
by 〈1, v1 ∧ . . . ∧ vn〉.

In this case, there is a Hochschild–Kostant–Rosenberg (HKR) isomorphism
HCn(A) ∼= �n(A)/d�n−1(A). Further, there is an isomorphism of A-modules
� : �p(A) ∼= �n−p(A) given by �p(ξ) = ιξω, where ω is a fixed constant nonzero
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n-form andwhere ιξ is contraction by ξ . In this case, by [11, Corollary 9.6], the derived
Poisson structure (of degree 2 − n) on HC•(A) has a very explicit description after
identifying reduced cyclic homology with forms via the HKR as above:

{α, β} = (−1)(n−|α|−1)(n−|β|)ιηdα, where η := �−1(dβ). (3.14)

Now, by [3, Section 2], HC(p)• (a) is identified (via the HKR map) with
�n,(p)(A)/d�n−1,(p+1)(A), where �n,(p)(A) is the space of n-forms on A whose
polynomial coefficients are homogeneous of weight p, i,e, Sym p(V ) ⊗ ∧n(V ). An
easy computation using (3.14) shows that {HC(p)• (a),HC(q)• (a)} is actually contained
in HC(p+q−2)• (a). Thus, in this case the derived Poisson Lie algebra from Theorem 3.3
becomes a graded (not just filtered) Lie algebra with respect to the Hodge decompo-
sition.

3.5.2 Necklace Lie algebras

Our next example is when a = LV , the free Lie algebra generated by an even dimen-
sional vector space (concentrated in homological degree 0) equippedwith a symplectic
form 〈–, –〉 : V × V −→ k. Taking C̄ := V [1] with 0 coproduct, we see that C is
Koszul dual to a. Further, the symplectic form on V can be viewed as a cyclic pairing
of degree −2 on C̄ . The resulting derived Poisson bracket {–, –} equips R� := Tk V�

with the structure of a Lie algebra. The Lie algebra (R�, {–, –}) is isomorphic to the
necklace Lie algebra (see [6,21]) associated with a one vertex quiver having 1

2 dimk V
loops.

Theorem 3.3 implies that the necklace Lie bracket restricts to give a Lie bracket on
the direct summand HC(2)

0 (a) = Sym(2)(LV )� of Tk V . Further, the filtration defined
in Theorem 3.3 makes the necklace Lie algebra a filtered Lie algebra. This example
also shows that the filtered structure in Theorem 3.3 is the best that we can get in
general: for example, in the necklace Lie algebra generated by a two dimensional
symplectic vector space V with v,w ∈ V such that 〈v,w〉 = 1, we have

{
[v3]�, [w3]�

}
= 9 [v2w2]�.

It is not difficult to verify that while the right hand side above is contained in
⊕r≤4Symr (LV )�, it is not contained in Sym4(LV )�.

Further, let Vn = k2n with the standard symplectic form. The symplectic form
preserving inclusion Vn ↪→ Vn+1 induces a homomorphism Ln −→ Ln+1 of necklace
Lie algebras, where Ln := ([T Vn]�, {–, –}). It is easily seen that these maps are
compatible with the filtration from Theorem 3.3. Thus, L∞ := lim−→n

Ln admits a

filtration as inTheorem3.3. In particular, L(2)∞ := lim−→n
Sym2(LVn)� is aLie subalgebra

of L∞.
Let P be a cyclic Koszul operad and let W be a symplectic vector space with

symplectic formω. Let FPW be the freeP-algebra generated byW . LetDer(FPW, ω)

be the Lie algebra of P-algebra derivations of FPW that preserve ω (see [21, Section



Dual Hodge decompositions and derived Poisson brackets

6] for example). We refer to Der(FPW, ω) as the Lie algebra associated with (the
symplectic vector space) W for the operadP . It is not difficult to see that Sym2(LVn)�
is the Lie algebra associated with Vn for the Lie operad while Ln is the Lie algebra
associated with Vn for the associative operad. The Lie homology of L∞ is related
to the cohomology of coarse moduli spaces of algebraic curves of fixed genus and
fixed number of punctures while the homology of L(2)∞ is related to spaces of outer
automorphisms of free groups with punctures (see [26]).

3.5.3 Unimodular Lie algebras

Let a be a Lie algebra of finite dimension n in homological degree 0. The Chevalley–
Eilenberg coalgebra C := C(a; k) is Koszul dual to a and isomorphic to Symc(a[1])
as graded vector spaces. For the pairing 〈–, –〉 from Sect. 3.5.1 to be compatible with
differentials, it is necessary and sufficient that a be unimodular i.e. that Tr(ad(x)) = 0
for all x ∈ a. This is the case, for instance, if a is semisimple. Thus, for unimodular
a, HC•(a) has a derived Poisson structure of degree 2 − n, to which Theorem 3.3
applies. Given that the graded (2 − n)-Lie structure on �(C)� is identical to that of
Sect. 3.5.1 (with theChevalley–Eilenberg differential being the only new ingredient), it
is reasonable to expect that for any unimodular Lie algebra a, {HC(p)• (a),HC(q)• (a)} ⊆
HC(p+q−2)• (a) for all p, q.

4 Topological applications

In this section, we will give a topological interpretation of Lie Hodge decompositions.
This interpretation is based onQuillen’s famous theorem [33] assigning to each simply
connected topological space X aDGLie algebra aX called aLiemodel of X . The cyclic
homology of UaX can be identified with the S1-equivariant homology of the free loop
space LX of X , and our main observation is that the Hodge components HC(p)• (aX )

correspond precisely to eigenspaces of Frobenius maps under this identification. For
an application, we will look at the Chas–Sullivan Lie algebra of a simply connected
closed manifold and show that the corresponding Lie bracket respects the Hodge
filtration, thus making the string topology algebra a filtered Lie algebra.

Throughout this section, we assume that k = Q and all homology and cohomology
groups are taken with rational coefficients.

4.1 Hodge decomposition of S1-equivariant homology

Let X be a 1-connected topological space of finite rational type. Recall (cf. [16]) that
one can associate to X a commutative cochain DG algebra AX , called a Sullivan
model of X , and a connected (chain) DG Lie algebra aX , called a Quillen model of
X . Each of these algebras is uniquely determined up to homotopy and each encodes
the rational homotopy type of X . The relation between them is given by a DG algebra
quasi-isomorphism

C•(aX ;Q)
∼→ AX , (4.1)



Y. Berest et al.

where C•(aX ;Q) is the Chevalley–Eilenberg cochain complex of aX .
Now, let LX denote the free loop space of X , i.e. the space of all continuous maps

S1 → X equipped with compact open topology. This space carries a natural S1-action
(induced by rotations of S1), and one can define the S1-equivariant homology of LX
via the Borel construction:

HS1• (LX) := H•(E S1 ×S1 LX,Q).

We will use a reduced version of equivariant homology, which is defined by

H
S1

• (LX) := Ker
[
HS1• (LX)

π∗−→ H•(BS1)
]
,

where the map π∗ comes from the natural homotopy fibration

LX → E S1 ×S1 LX
π−→ BS1. (4.2)

The following theorem is a well known result due to Goodwillie [22] and Jones
[23] (see also [24]).

Theorem 4.1 ([23]) There are natural isomorphisms of graded vector spaces

αX : HH•(UaX )
∼−→ H•(LX), βX : HC•(UaX )

∼−→ H
S1

• (LX)

transforming the Connes periodicity sequence for UaX to the Gysin long exact
sequence for the S1-equivariant homology of LX.

Next, for each integer n ≥ 0, we consider the n-fold covering of the circle:

ωn : S1 −→ S1, eiθ �→ einθ ,

and denote by ϕn
X ; LX −→ LX the induced map on LX . While the maps ϕn

X are not
equivariant with respect to the S1-action onLX , they fit into the commutative diagram
(cf. [8])

LX
ϕn

X � LX

(E S1 ×S1 LX)Q

�
ϕ̃n

X� (E S1 ×S1 LX)Q

�

(BS1)Q

�
Bωn

� (BS1)Q

�

, (4.3)

where the columns arise from the rationalization (Bousfield localization at zero) of
the homotopy fibration (4.2). The maps ϕn

X and ϕ̃n
X in (4.3) induce graded linear

endomorphisms

�n
X : H•(LX) → H•(LX) , �̃n

X : H
S1

• (LX) → H
S1

• (LX),
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which are called the power or Frobenius operations on H•(LX) and H
S1

• (LX). We
write

H
(d)

• (LX) :=
⋂

n≥0

Ker(�n
X − nd Id), H

S1, (d)

• (LX) :=
⋂

n≥0

Ker(�̃n
X − nd Id)

(4.4)
for the common eigenspaces of these endomorphisms corresponding to the eigenvalues
nd .

Now, the main result of this section can be stated as follows.

Theorem 4.2 For each p ≥ 0, there are natural isomorphisms

HH
(p)

• (aX ) ∼= H
(p)

• (LX), HC
(p)

• (aX ) ∼= H
S1, (p−1)
• (LX)

given by restriction of the isomorphisms αX and βX of Theorem 4.1.

ToproveTheorem4.2we recall from [2] the constructionof aLieHodgedecomposi-
tion in terms of (dual) Adams operations on the cobar construction of a cocommutative
DG algebra. First, recall that by Adams operations on a commutative algebra A one
usually means a family {ψn}n≥0 of algebra homomorphisms ψn : A → A satisfying
the relations

ψ1 = Id, ψn ◦ ψm = ψnm . (4.5)

Dually, for a cocommutative coalgebra A, we define Adams operations to be a family
{ψn}n≥0 of coalgebra homomorphisms ψn : A → A satisfying (4.5). Now, if A
is either a commutative or cocommutative Hopf algebra, there are natural Adams
operations on A defined by the formulas8

ψ1 = Id, ψn = μn ◦ �n , n ≥ 2, (4.6)

where μn : A⊗n → A is the n-fold product and �n : A → A⊗n is the n-fold
coproduct on A.

Next, recall that, if a is a DG Lie algebra, its Koszul dual is a cocommutative
(conilpotent) DG coalgebra C . Associated to C are two cobar constructions: the clas-
sical (Adams) cobar construction �(C), which gives a cofibrant resolution of Ua in
DGAk/k , and the Lie cobar construction �Comm(C), which gives a cofibrant resolu-
tion of a in DGLAk . The relation between these constructions is given by a canonical
isomorphism �(C) ∼= U[�Comm(C)], which shows that �(C) has a natural structure
of a cocommutative DG Hopf algebra. Thus, �(C) can be equipped with a family
{ψn}n≥0 of (coalgebra) Adams operations given by formulas (4.6). It is shown in [2]
(see op. cit., Section 7) that these operations on �(C) induce Adams operations on
the (reduced) cyclic homology of Ua, and the construction of [2] can be extended to
define Adams operations on the Hochschild homology of Ua. We denote these Adams
operations on HH•(Ua) and HC•(Ua) by�n and �̃n , respectively. Proposition 7.3 of

8 For commutative Hopf algebras, these Adams operations are defined and studied in [28, Section 4.5],
while, for cocommutative Hopf algebras, they appear in [2, Section 7].
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[2] then implies that the Hodge components HH(p)• (a) and HC(p)• (a) are the common
eigenspaces of �n and �̃n corresponding to the eigenvalues n p:

HH
(p)

• (a) =
⋂

n≥0

Ker(�n − n p Id), HC
(p)

• (a) =
⋂

n≥0

Ker(�̃n − n p Id). (4.7)

Now, let �n
X and �̃n

X denote the Adams operations on HH•(UaX ) and HC•(UaX )

coming from�(C), where C = C•(aX ;Q) is the Chevalley–Eilenberg chain complex
of aX . Theorem4.2 follows immediately from (4.4), (4.7) and the next key proposition.

Proposition 4.1 For each n ≥ 0, the isomorphism αX intertwines the Adams opera-
tion �n

X with the Frobenius operation �n
X , and the isomorphism βX intertwines �̃n

X
with the n-th multiple of �̃n

X , i.e.

αX ◦ �n
X = �n

X ◦ αX , βX ◦ �̃n
X = n �̃n

X ◦ βX .

Proof We deduce Proposition 4.1 from results of the paper [8]. Theorem B of that
paper provides natural isomorphisms

aX : HH−•(AX )
∼−→ H

•
(LX), bX : HC−•(AX )

∼−→ H
•−1
S1 (LX), (4.8)

relating the Hochschild and cyclic homology of a Sullivan model of X to the (reduced)
cohomology and S1-equivariant cohomology of LX . Since AX is a commutative DG
algebra, its Hochschild and cyclic homology carry natural Adams operations which
we denote by �n and �̃n , respectively. On the other hand, the cohomology and S1-
equivariant cohomology of LX carry Frobenius operations induced by ϕn : we denote
these by �n : H

•
(LX) → H

•
(LX) and �̃n : H•

S1(LX) → H
•
S1(LX). Now, part (2)

of [8, Theorem B] says that

aX ◦ �n = 1

n
�n ◦ aX , bX ◦ �̃n = �̃n ◦ bX . (4.9)

To relate the isomorphisms (4.8) to those of Theorem 4.1, we recall a theorem of
Quillen [34] identifying

HH•(UaX ) ∼= HH•[C•(aX ;Q)], HC•(UaX ) ∼= HC•+1[C•(aX ;Q)]. (4.10)

Since X is assumed to be of finite rational type, its Lie and Sullivan models aX

and AX are locally finite DG algebras, i.e. have finite-dimensional components in
each homological degree. Dualizing (4.1), we then have a quasi-isomorphism of DG
coalgebras A∗

X
∼→ C•(aX ;Q)∗ ∼= C•(aX ;Q) . Combined with (4.8) and (4.10), this

quasi-isomorphism induces natural isomorphisms

HH•(UaX ) ∼= HH•[C•(aX ;Q)] ∼= HH−•(AX )∗
(a−1

X )∗−−−→ H
•
(LX)∗ ∼= H•(LX),

(4.11)
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HC•(UaX ) ∼= HC•+1[C•(aX ;Q)] ∼= HC−•−1(AX )∗
(b−1

X )∗−−−→ H
•
S1(LX )∗ ∼= H

S1

• (LX),

(4.12)

where the star ( – )∗ stands for graded linear duals. Since aX and bX are functo-
rial and transform Connes’ exact sequence on homology to the Gysin sequence for
S1-equivariant cohomology, the isomorphisms (4.11) and (4.12) are functorial and
transformConnes’ sequence to the Gysin sequence on S1-equivariant homology. Thus
(4.11) and (4.12) coincide with the isomorphisms αX and βX of Theorem 4.1. Now,
by [2, Proposition 7.4], the direct summand HC(p)• (aX ) of HC•(UaX ) is identified

with HC
(p−1)
−•−1 (AX )∗ under the first two isomorphisms in (4.12), and by [8, Theo-

rem B], HC
(p−1)
−•−1 (AX )∗ is the common eigenspace of the Adams operations �̃∗

n with

the eigenvalues n p−1. On the other hand, HC(p)• (aX ) is the common eigenspace of
the Adams operations �̃n with the eigenvalues n p. Hence the first two isomorphisms

of (4.12) intertwine �̃n on HC•(UaX ) with n�̃∗
n on HC

(p−1)
−•−1 (AX )∗. Now, by (4.9),

the map (b−1
X )∗ intertwines �̃∗

n with �̃∗
n , and under the last isomorphism in (4.12),

the dual power operation �̃∗
n on H

•
S1(LX )∗ corresponds to �̃n on H

S1

• (LX). Thus, the
composite map (4.12) intertwines �̃n with n �̃n . This proves the second equality of
Proposition 4.1. The proof of the first is similar. ��

Theorem 4.2 together with Theorem 2.2 has the following important corollary.

Corollary 4.1 There are natural Hodge decompositions

H•(LX) ∼=
∞⊕

p=0

H
(p)

• (LX), H
S1

• (LX) ∼=
∞⊕

p=0

H
S1, (p)

• (LX).

The Gysin sequence decomposes into a direct sum of Hodge components

. . .
D−→ H

S1, (p)

n−1 (LX) → H
(p)

n (LX) → H
S1,(p−1)
n (LX)

D−→ H
S1, (p)

n−2 (LX) → . . .

where D stands for the Gysin map.

Remark For a simply connected closed manifold X , a natural decomposition of the
homology of LX is constructed (by a different method) in [17]. Comparing the result
of [17, Proposition 3] with our Proposition 2.4 shows that in the case when X is a
simply connected closed manifold, our Hodge decomposition of H•(LX) agrees with
that of [17].

4.2 Hodge filtration on string topology

Let M be a simply connected closed oriented manifold of dimension d. A construction
of Lambrechts and Stanley (see [27], Theorem 1.1) provides a finite-dimensional
commutative DG algebraA, which is a model for the singular cochain complex of M .
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This model comes equipped with a nondegenerate cyclic pairing of (cohomological)
degree n = −d. The linear dual ofA gives a cocommutative coalgebramodelC := A∗
for the singular chain complex of M that has a cyclic pairing of (homological) degree
n = −d. It is known (and easy to check) that �Comm(C) is a Lie model of M ; hence,
by Theorem 4.1, we have

HC•[�(C)] ∼= H
S1

• (LM), HH•[�(C)] ∼= H•(LM),

and the cyclic pairing on C induces a derived Poisson structure on H
S1

• (LM) of degree
n + 2. The corresponding Lie bracket coincides with the Chas–Sullivan bracket [9],
and the resulting Lie algebra is called the string topology Lie algebra of M (cf. [10]).
Further, by Theorem 3.2, H•(LM) is a Lie module (of degree n + 2) over the string

topology Lie algebra of M , and the Gysin map D : H
S1

• (LM) −→ H
S1

•−2(LM) is a Lie
module homomorphism.

We may now apply in this situation the results of Sects. 3 and 4: as a consequence
of Theorem 3.3, Theorem 3.4, Theorem 3.5 and Theorem 4.2, we get

Theorem 4.3 (i) The string topology Lie algebra of a closed d-dimensional manifold
M is filtered as a Lie algebra with respect to the following Hodge filtration

FpH
S1

• (LM) :=
⊕

q≤p+1

H
S1, (q)

• (LM).

(i i) The homology of the free loop space H•(LM) is filtered as a Lie module over the
string topology Lie algebra of M with respect to the following Hodge filtration

FpH•(LM) :=
⊕

q≤p+2

H
(q)

• (LM).

(i i i) The Chas–Sullivan bracket restricts to the first Hodge component H
S1, (1)
• (LM),

making it a Lie algebra. Further, H
S1

• (LM) is a graded Lie module over H
S1, (1)
• (LM)

with the grading given by the Hodge decomposition of H
S1

• (LM).

(iv) For each p ≥ 0, the Gysin map D : H
S1, (p)

• (LM) −→ H
S1, (p+1)
•−2 (LM) is a map

of graded Lie modules over H
S1,(1)
• (LM).

The Lambrechts–Stanley Lie model �Comm(A∗) and unimodular Lie algebras (in
particular, abelian Lie algebras) are Koszul dual to “Poincaré duality CDGC”, i.e.
cocommutativeDGcoalgebras that are graded linear duals of Poincaré dualityCDGA’s
in the sense of [27]. This should be contrasted with necklace Lie algebras, in which
case the coproduct on the Koszul dual coalgebra and the cyclic pairing are unrelated.
Given the example of symmetric algebras in Sect. 3.5.1, where the Hodge filtration
actually becomes a Hodge decomposition, we expect the following conjecture to be
true.
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Conjecture 1 Let a ∈ DGLAk be Koszul dual to a connected finite-dimensional
C ∈ DGCCk/k equipped with a Poincaré duality pairing of degree n. Then, the Hodge
filtrations on the derived Poisson structures on HC•(a) and HH•(a) become direct
Hodge decompositions, i.e. for all p, q ≥ 0,

{
HC(p)• (a), HC(q)• (a)

}
⊆ HC(p+q−2)• (a),

{
HC(p)• (a), HH(q)• (a)

}
⊆HH(p+q−2)• (a).

In particular, we expect that the Chas–Sullivan bracket of a closed d-dimensional
manifold satisfies

{
H

S1, (p)

• (LM), H
S1, (q)

• (LM)

}
⊆ H

S1, (p+q−1)
• (LM).

5 Relation to derived representation schemes

In this section, we recall the construction of derived representation schemes of Lie
algebras from [2, Section 6, Section 7]. The main result of this section is Theorem 5.1,
the proof of which we outline. The full details will appear in [37].

5.1 Derived representation schemes and Drinfeld traces

Let g be a finite-dimensional Lie algebra. Consider the functor

(–)g : DGLAk −→ DGCAk/k, a �→ ag

:= Symk(a ⊗ g∗)
〈〈(x ⊗ ξ1).(y ⊗ ξ2) − (−1)|x ||y|(y ⊗ ξ1).(x ⊗ ξ2) − [x, y] ⊗ ξ 〉〉 ,

where g∗ is the vector space dual to g and where ξ �→ ξ1 ∧ ξ2 is the map dual
to the Lie bracket on g. The augmentation on ag is the one induced by the map
taking the generators a ⊗ g∗ to 0. Let g(–) : DGCAk/k −→ DGLAk denote the functor
B �→ g(B̄) := g⊗ B̄. It is shown in [2, Section 6.3] that the functors (–)g : DGLAk �
DGCAk/k : g(–) form a (Quillen) adjoint pair.

Thus, ag is the commutative (DG) algebra corresponding to the (DG) scheme
Repg(a) parametrizing representations of a in g. Since the functor (–)g is left Quillen,
it has a well behaved left derived functor

L(–)g : Ho(DGLAk) −→ Ho(DGCAk/k).

Like for any left derived functor, we have L(a)g ∼= Lg inHo(DGCAk/k), whereL ∼−→ a
is any cofibrant resolution in DGLAk . We define

DRepg(a) := L(a)g in Ho(DGCAk/k), H•(a, g) := H•[L(a)g].
DRepg(a) is called the derived representation algebra for representations of a in g.
The homology H•(a, g) is called the representation homology of a in g. It is not
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difficult to check that g acts naturally by derivations on the graded (commutative)
algebra H•(a, g). We denote the corresponding (graded) subalgebra of g-invariants by
H•(a, g)ad g.

Let L ∼−→ a be a cofibrant resolution. The unit of the adjunction (–)g : DGLAk �
DGCAk/k : g(–) is the universal representation

πg : L −→ g(Lg).

Let the functor λ(p) be as in Sect. 2.3.1. There is a natural map λ(p)[g(Lg)] −→
Lg ⊗ λ(p)(g). For P ∈ I p(g) := Sym p(g∗)ad g, evaluation at P gives a linear
functional evP on λ(p)(g). One thus has the composite map

λ(p)(L)
λ(p)(πg)� λ(p)[g(Lg)] � Lg ⊗ λ(p)(g)

Id ⊗ evP� Lg

for P ∈ I p(g). On homologies, this gives the map

Trg(P, a) : HC(p)• (a) −→ H•(a, g)ad g,

which we call the Drinfeld trace map associated to P (see [2, Section 7] for further
details regarding this construction). If g is semisimple, the Killing form is a canonical
element of I 2(g). We denote the associated Drinfeld trace by

Trg(a) : HC(2)• (a) −→ H•(a, g)ad g.

Let a ∈ DGLAk be Koszul dual to C ∈ DGCCk/k , where C is n-cyclic.

Theorem 5.1 There is a Poisson structure on H•(a, g)ad g such that the Drinfeld trace
map Trg(a) is a graded Lie algebra homomorphism.

Theorem 5.1 may thus be viewed as a generalization of [21, Theorem 6.7] for the
Lie operad (the latter result is proven only for free algebras over operads). It could
also be seen as an analog of [1, Theorem 2] in the Lie setting.

5.2 Proof of Theorem 5.1

Recall from [20, Section 4.5] that a cyclic pairing 〈–, –〉 on a (graded) Lie algebra a is
a symmetric pairing that is ad-invariant. Equivalently, the map 〈–, –〉 : a⊗a −→ k is a
(graded) a-module homomorphism,where k is equippedwith the trivial action. Dually,
a cyclic pairing on a (graded) Lie coalgebra G is a pairing 〈–, –〉 : G ⊗ G −→ k that
is a (graded) G-comodule homomorphism, with k equipped with the trivial coaction.
Explicitly, if 〈–, –〉 is a cyclic pairing of degree n on a Lie coalgebra G, then if
�(x) = x1 ⊗ x2, etc. in the Sweedler notation, we have

x1〈x2, y〉 ± x2〈x1, y〉 ± y1〈x, y2〉 ± y2〈x, y1〉 = 0,
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where the signs are determined by the Koszul sign rule. IfG is differential graded, we
further demand that a cyclic pairing of degree n onG be compatible with differential,
i.e. that for all x, y ∈ G, 〈δx, y〉 + (−1)|x |+n〈x, δy〉 = 0.

Further recall that for a DG Lie coalgebra G, one has the Chevalley–Eilenberg
algebra Cc(G; k) which is the construction formally dual to the Chevalley–Eilenberg
coalgebra C(a; k) of a DG Lie algebra.

Lemma 5.1 If G ∈ DGLCk is equipped with a cyclic pairing of degree n, then the
Chevalley–Eilenberg algebra Cc(G; k) acquires a DG Poisson structure.

Proof Note that as a graded commutative algebra, Cc(G; k) ∼= Sym(G[−1]). The
degree n-cyclic pairing on G gives a skew symmetric degree pairing on G[−1]. This
gives a graded Poisson structure on Sym(G[−1]). The compatibility of this structure
with respect to the differential on Cc(G; k) follows from the fact that the pairing onG
is cyclic. ��

Let a ∈ DGLAk be Koszul dual to C ∈ DGCCk/k where C is n-cyclic. If g is
semisimple, then the Killing form on g gives an isomorphism g ∼= g∗. Under this
isomorphism, the Killing form on g is identified with a cyclic pairing κ on g∗. Note
that g∗(C̄) := g∗ ⊗ C̄ has the structure of a DG Lie coalgebra. Tensoring κ with
the pairing on C̄ , we obtain a degree n-cyclic pairing on g∗(C̄). By Lemma 5.1, this
gives a DG Poisson structure of degree on Cc(g∗(C); k), which represents DRepg(a)
in Ho(DGCAk/k) by [2, Theorem 6.5]. On homologies, we obtain a graded Poisson
structure on H•(a, g). It can be shown that the above Poisson structure on H•(a, g)
restricts to a Poisson structure on H•(a, g)ad g.

On the other hand, the Killing form on g is an element of I 2(g). The associated
Drinfeld trace is a map of graded vector spaces Trg(a) : HC(2)• (a) −→ H•(a, g)ad g.
Note that by Theorem 3.3 (ii), HC(2)• (a) acquires the structure of a graded Lie algebra,
namely, its derived Poisson structure. On the other hand, by Lemma 5.1, the pairing on
C̄ induces a graded Poisson structure on H•(a, g). We now study the relation between
these Poisson structures.

Let L := �Comm(C). Thus, by [2, Theorem 6.5], Lg
∼= Cc(g∗(C̄); k). By Propo-

sition 3.4 (ii), λ(2)(L) is a DG Lie algebra. In addition, by Lemma 5.1, Lg has a DG
Poisson structure. Let Trg(L) be the Drinfeld trace λ(2)(L) −→ Lg associated with the
Killing form on g. Let R := �(C), which is isomorphic to UL as a DG algebra. By
Lemma 6.2 and [5, Lemma A.1], the map ∂̄ : R −→ �1R� [see (2.6)] induces a map
∂̄ : λ(2)(L) −→ L ⊗ V , where V := C̄[−1]. Note that the DG-module of �1

Lg
of

Kähler differentials on Lg is isomorphic to Lg ⊗ g∗(C̄)[−1] as a graded Lg-module.
Let d : Lg −→ �1

Lg
be the de Rham differential. The proof of the following lemma

will appear in [37].

Lemma 5.2 The following diagram commutes:

λ(2)(L)
∂̄� L ⊗ V

πg ⊗ Id� Lg ⊗ g ⊗ V

Lg
d �Trg(L)

�
�1
Lg

∼=�
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Here, the vertical isomorphism on the right identifies g with g∗ through the Killing
form.

It is not difficult to verify that the bracket on λ(2)(L) is given by the composite map

λ(2)(L) ⊗ λ(2)(L)
∂̄ ⊗ ∂̄� (L ⊗ V ) ⊗ (L ⊗ V ) � (L ⊗ L) ⊗ (V ⊗ V )

can ⊗ 〈–, –〉� λ(2)(L),

where can : L ⊗ L −→ λ(2)(L) is the canonical projection. By the construction of
Trg(L), the following diagram commutes.

(L ⊗ V ) ⊗ (L ⊗ V )
(πg ⊗ Id) ⊗ (πg ⊗ Id)� (Lg ⊗ g(C̄)[−1]) ⊗ (Lg ⊗ g(C̄)[−1])

(L ⊗ L) ⊗ (V ⊗ V )
�

(Lg ⊗ Lg) ⊗ (g∗(C̄)[−1] ⊗ g∗(C̄)[−1])
�

λ(2)(L)

can ⊗ 〈–, –〉 �
Trg � Lg

μ ⊗ 〈–, –〉�

Here, in the first vertical arrow on the right, g is identified with g∗ via Killing form.
μ is the product on Lg and the pairing on g∗(C̄)[−1] is the one induced by the cyclic
pairing on g∗(C̄). Composing the bottom arrowwith the left vertical arrows composed
with ∂̄ ⊗ ∂̄ , we obtain Trg({–, –}) : λ(2)(L) ⊗ λ(2)(L) −→ Lg. On the other hand, by
Lemma 5.2 composing the bottom arrow with the left vertical arrows composed with
∂̄ ⊗ ∂̄ gives us the map

λ(2)(L) ⊗ λ(2)(L) −→ Lg, (α, β) �→ 〈dTrg(α), dTrg(β)〉,

where the pairing 〈–, –〉 : �1
Lg

⊗�1
Lg

−→ Lg is induced by the pairing on g∗(C̄)[−1].
This map is easily seen to be {Trg(–),Trg(–)} : λ(2)(L) ⊗ λ(2)(L) −→ Lg. Thus,

Trg({–, –}) = {
Trg(–),Trg(–)

} : λ(2)(L) ⊗ λ(2)(L) −→ Lg.

It is not difficult to verify that the DG Poisson bracket on Lg restricts to a DG

Poisson bracket on Lad g
g . We thus obtain Theorem 5.1 on homologies.

6 Appendix: Free (Lie) algebras

Let V be a (homologically) graded k-vector space. Let R := Tk V , the free graded
k-algebra generated by V . Let L := LV , the free graded Lie algebra generated by V .
It is well known that R ∼= UL. Thus, the direct sum of symmetrization maps gives an
isomorphism of graded L-modules

Sym(L) = ⊕pSym
p(L) ∼= R.
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In what follows, we shall view Sym p(L) as a graded subspace of R via the sym-
metrization map. For β1, . . . , βp homogeneous in R, let s(β1, . . . , βp) denote the
symmetrization of β1, . . . , βp, i.e. the sum

s(β1, . . . , βp) :=
∑

σ ∈ Sp

±βσ(1) · . . . · βσ(p),

where · denotes the product on R and where the sign in front of each summand is the
sign determined by the Koszul sign rule.

Lemma 6.1 Let δ : R −→ R be a homogeneous derivation. Suppose that δ(V ) ⊆
Symq(L).

(i) If q > 1, then δ[Sym p(L)] ⊆ ⊕
r≤p+q−1 Sym

r (L) for any p ≥ 1.

(ii) If q ≤ 1, then δ[Sym p(L)] ⊆ Sym p+q−1(L).

Proof First, note that if α ∈ L is homogeneous and if δ(α) ∈ Symq(L), then for
any homogeneous v ∈ V ,

δ([α, v]) = δ(α · v − (−1)|α||v|v · α)

= δ(α) · v + (−1)|α||δ|α · δ(v) − (−1)|α||v|δ(v)

· α − (−1)|α||v|+|δ||v|v · δ(α)

= [δ(α), v] + (−1)|α||δ|[α, δ(v)].

Since [L,Symq(L)] = [Symq(L),L] ⊆ Symq(L) and V ⊆ L, the element αn :=
[v1, [v2, . . . [vn−1, vn] . . .]] satisfies δ(αn) ⊆ Symq(L) for homogeneous v1, . . . , vn

in V by induction on n. It follows that δ(L) ⊆ Symq(L). The desired lemma now
follows from the fact that for β1, . . . , βp ∈ L,

δ[s(β1, . . . , βp)] =
p∑

i=1

±s(β1, . . . , δ(βi ), . . . , βp).

Indeed, the symmetrization of p − 1 elements of L with an element of Symq(L) is
in

⊕
r≤p+q−1 Sym

r (L) if q > 1 and in Sym p+q−1(L) if q = 0, 1. ��

Identify �1R� with R ⊗ V as in (2.5). Let ∂̄ : R̄ −→ �1R� be as in (2.6).

Lemma 6.2 ∂̄[Sym p(L)] ⊆ Sym p−1(L) ⊗ V .

Proof Let ∂̄ ′ : R̄ −→ V ⊗ R̄ be the operator

(v1, . . . , vn) �→
n∑

i=1

(−1)(|v1|+···+|vi−1|)(|vi |+···+|vn |)vi ⊗ (vi+1, . . . , vn, v1, . . . , vi−1).
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Note that there is a right action of Sn on V ⊗n . Explicitly, for σ ∈ Sn and for
v1, . . . , vn homogeneous, (v1 . . . vn) ·σ := ±(vσ(1) . . . vσ(n)), where the sign is deter-
mined by the Koszul sign rule. Let τ be the n-cycle (12 . . . n). Then, the restriction of
∂̄ ′ to V ⊗n is given by the composite map

V ⊗n (–) · N� V ⊗n � V ⊗ V ⊗n−1,

where N = ∑n−1
i=0 τ i and where the last arrow is the obvious isomorphism that per-

mutes no factors. Further note that the above right action of Sn on V ⊗n is dual to the
left action of Sn on W ⊗n used in [28, Section 4.5] (with W := V ∗).

Let Sn,p be the set of permutations in Sn having p − 1 descents in the sense of [28,

Section 4.5.5]. Let l P
n := ∑

σ ∈Sn,p
σ and let e(p)

n be the Eulerian idempotent

e(p)
n =

n∑

j=1

a p, j
n l j

n ,

where the Stirling numbers a p, j
n are defined by the identity

∑n
p=1 a p, j

n X p = (X− j+n
n

)
.

By [30, Remark 2.10], the right action of the Eulerian idempotent e(p)
n on V ⊗n is

the projection from V ⊗n to Sym p(L) ∩ V ⊗n . Let Sn−1 be viewed as the subgroup of
Sn fixing 1. By the proof of [28, Theorem 4.6.6] (more specifically, formula (4.6.6.2)
in loc. cit.), e(p)

n N = Ne(p−1)
n−1 . Hence, for any α ∈ Sym p(L) ∩ V ⊗n ,

α · N = (α · e(p)
n ) · N = α · (e(p)

n N ) = α · (Ne(p−1)
n−1 ) = (α · N ) · e(p−1)

n−1 .

It follows that (α · N ) ·e(i)
n−1 = δi,p−1α · N , where δi, j is the Kronecker delta. Thus,

∂̄ ′ [Sym p(L) ∩ V ⊗n] ⊆ V ⊗ (Sym p−1(L) ∩ V ⊗n−1).

The desired lemma follows once we observe that ∂̄ is given by composing ∂̄ ′ with the
isomorphism V ⊗ R ∼= R ⊗ V that swaps factors. ��
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