Kazhdan-Lusztig cells (of Coxeter gps) $(W,S) \longrightarrow H = A (C_w: w \in W > KL poly.$ We the bases?

A < Tw: w & W > Bruhat water Multiplication rules in the bases: T: Ts Tw = { Tow if Sw > w; } follows from defining (v-vi) Tw - Tsw if Sw 2 w; I relating in H C: $C_5 C_W = \begin{cases} C_{5W} + \sum_{sykycw} M_{yw} C_y & \text{if } sw > W ; \text{ } foothus from further } \\ (V+V') C_W & \text{if } sw < W . I facts about H. } \\ \text{Where } M_{yw} & \text{13 the welfwent of } V' & \text{in } P_{y,w} & (M_{y,w} \text{ may be } 0). \end{cases}$ Kazhdan-Lusztiz cells. Def. (KL orders) For x, y & W. We -declare $x \neq y$ if (x appears (w) numbers coeff)in C_sC_y for some S; $(rght \text{ verson}; x \neq y \text{ if } C_x \text{ appears in } C_yC_s \text{ for some } s$. define $x \leq y$ if $\exists a \text{ seq. } x = w_1, w_2, -, w_n = y$ st wid with tie { 1,-... n-1} ie., f x=w, \langle wz \langle --. \langle w_n = y (so \le is just the trans. Five closure of \(\)

· define x ~ y f x & y and y & x. RMK: Then 7 13 an equivalence relation on W. The converponding equivalence classes are called the left Kazhdan-Luztig cells of W. Right (KL) cells can be defined smilarly. So can two-sided KL cells. (x xy if x xy or x xy transfire to Fach two-sided cell more be a union of left cell).

Interesting faits / questions. - If y can be obtained from x by a left ster operation, then x = y. — If $x \in y$, then R(x) = R(y). — G: When is FC(w) a union of two-sided cells? A: Known, but highly nontrivial.

Example, Dihadral systems.

Facts: (1)
$$C_{w} = \sum_{y \in w} l^{y} - l^{w} - l^{y} - l^{w} - l^{y} - l^{w} - l^{y} - l^{w} - l^{$$

Q: (1) Can we detect left/right descent and left/right (ell Information for TC elets from TL diagrams?

Lusztig-Machas Involutions.

Thm. Let (w.s) be a finite loxeter system. Let wo be the largest elt in W. Let $w \in W$ and suppose $T_{v_0}Cw = \sum_{y \notin W} d_{yw}C_y$. Then there exists a unique elt y s-t. $d_{y,w} \neq 0$ and $y \sim w$.

Moreover, if we denote the unique ebt by $\lambda(w)$, then $\lambda(\lambda w) = w \forall w$.

Q: If TL(w,s) has a diagram realization and WEFC(W),

can we describe $\lambda(\omega)$ diagrammatically? Key computation: Two Cw.