$$|H(An)| = \sum_{i \in J} |H(An)| = \sum_{i \in J} |H(A$$

Last time: TLQ(An)

 \cong $TLP_{\delta}(A_n)$ \cong $TLD_{\delta}(A_n)$

[ci][cj]=[cj][ci] m [Le of m(i,j)=2.

· (Most literesting) Ciji = Cicj Ci-Ci M 4, FiEj Fi = Fi if m(i,j) = 0 ← $[c_i][c_j][c_i] = [c_i]$ in TLQ If mlij)=3. Rmks: - In general, even orderle type A, we can use the same CIZIZ -ZCICZ corr. to KL gen G \ \text{YSES. find relations for \{\frac{1}{2}\}} $C_{12} = C_{12} = C_{12} + C_{12}$ by considering dihedral subsystems of $H(W_1)$. $C_{11} = C_{12} + C_{12}$

-> Eif Fif = 2 Eif edger: {i,j}= {1,2} became Cijij = CiGCiG-zCiG. other eyes \longrightarrow $\overline{t_i}\overline{t_j}\overline{t_i}=\overline{t_i}$ as before. EX- Find the presentation for TLQ(Hn) Hn: 50000. - In principle. We know the TLP presentation for every Coxeller system

we'll be incerned with.

- On the other hand, it's not trivial to have a dizgram realization of $TLQ(w,s) \cong TLP(w,s)$ for general Coxeter systems.

In fact, the medication is only known to exist in types A, B, H, D, E, En (4000040). In each case, the diagram realization can be described as a diagram algebra w/ a basis given by noncrossing pairings Satisfying certain conditions and of must given by stacking t botal peduction.

E.g. By 'some arcs in the dragrams may now carry a certain decoration.

but only arcs exposed to the west can f more technical unlitters.

It; in general nontrivial to show that diagrams fishing the description are gen by a obrown, generating set coming from It's also in general difficult to find the local reduction rules to reflect the rely on TLP (w,s). - It's true that for any (w.s), TLQ(ws) = TLP(ws) have bases indexed by the fully commutative ett in W. When TLD(W.S) exists, there's a bijection between FC(W) and the dragram bass etts. Q: What should be the dragram for each w = FC(w)?