Math 4140. Homework 9

due Wednesday, April 13
Note: All numbered exercises are from Erdmann-Holm ([EH]).
(1) Read Chapter 4 of [EH] again.
(2) Exercise 4.1.
(3) Exercise 4.2.
(4) Exercise 4.6.
(5) Prove that if A is a commutative k-algebra, then the Jacobson radical $J(A)$ contains all nilpotent elements of A.
(6) Prove that for any k-algebra A, we have $J(A / J(A))=0$.
(7) Let k be an infinite field. Let f be a polynomial in $k[x]$ and let $f=f_{1}^{a_{1}} \ldots f_{r}^{a_{r}}$ be the unique decomposition of f into pairwise coprime irreducible factors f_{1}, \ldots, f_{r}. Let $A=k[x] /\langle f\rangle$.
(a) Find the maximal ideals of A.
(b) Find the Jacobson radical of A.
(c) Describe when A is semisimple (" A is semisimple if and only if ..."), and justify your description.
(d) Prove that $k[x]$ is not semisimple.
(e) Prove that the Jacobson radical $J(k[x])$ of $k[x]$ is zero.
(f) By the previous two parts, the algebra $k[x]$ has trivial Jacobson radical but is not semisimple. Why does this not contradict Part (g) of Theorem 4.23?

